Alpha Power Transformed Extended power Lindley Distribution
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ahmad, Z., Ilyas, M., Hamedani, G.G.: The extended alpha power transformed family of distributions: properties and applications. J. Data Sci. 17(4), 726–741 (2019)
Alkarni, S.H.: Extended power Lindley distribution: a new statistical model Fornon-monotone survival data. Eur. J. Stat. Probab. 3(3), 19–34 (2015)
Alzaatreh, A., Lee, C., Famoye, F.: A new method for generating families of continuous distributions. Metron 71(1), 63–79 (2013)
Cordeiro, G.M., de Castro, M.: A new family of generalized distributions. J. Stat. Comput. Simul. 81(7), 883–898 (2011)
Dey, S., Ghosh, I., Kumar, D.: Alpha-power transformed Lindley distribution: properties and associated inference with application to earthquake data. Ann. Data Sci. 6(4), 623–650 (2019)
Dey, S., Nassar, M., Kumar, D.: Alpha power transformed inverse Lindley distribution: a distribution with an upside-down bathtub-shaped hazard function. J. Comput. Appl. Math. 348, 130–145 (2019)
Eltehiwy, M.: On the alpha power transformed power inverse Lindley distribution. J. Indian Soc. Probab. Stat. 1–24 (2020)
Ghitany, M.E., Balakrishnan, N., Al-Enezi, L.J., Al-Mutairi, D.K.: Power Lindley distribution and associated inference. Comput. Stat. Data Anal. 64, 20–33 (2013)
Hassan, A.S., Elgarhy, M., Mohamd, R.E., Alrajhi, S.: On the alpha power transformed power Lindley distribution. J. Probab. Stat. 2019 (2019)
Ijaz, M., Mashwani, W.K., Göktaş, A., Unvan, Y.A.: A novel alpha power transformed exponential distribution with real-life applications. J. Appl. Stat. 1–16 (2021)
Jones, M.C.: On families of distributions with shape parameters. Int. Stat. Rev. 83(2), 175–192 (2015)
Lee, C., Famoye, F., Alzaatreh, A.Y.: Methods for generating families of univariate continuous distributions in the recent decades. Wiley Interdiscip. Rev. Comput. Stati. 5(3), 219–238 (2013)
Lee, E.T., Wang, J.: Statistical Methods for Survival Data Analysis, vol. 476. Wiley, New York (2003)
Lindley, D.V.: Fiducial distributions and Bayes’ theorem. J. R. Stat. Soc. Ser. B (Methodol.) 20(1), 102–107 (1958)
Mahdavi, A., Kundu, D.: A new method for generating distributions with an application to exponential distribution. Commun. Stat. Theory Methods 46(13), 6543–6557 (2017)
Marshall, A.W., Olkin, I.: A new method for adding a parameter to a family of distributions with application to the exponential and weibull families. Biometrika 84(3), 641–652 (1997)