Almost symmetric good semigroups

Ricerche di Matematica - Trang 1-15 - 2023
L. Casabella1, M. D’Anna2
1Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
2Dipartimento di Matematica e Informatica, Università degli studi di Catania, Catania, Italy

Tóm tắt

The class of good semigroups is a class of subsemigroups of $${\mathbb {N}}^h$$ , that includes the value semigroups of rings associated to curve singularities and their blowups, and allows to study combinatorically the properties of these rings. In this paper we give a characterization of almost symmetric good subsemigroups of $${\mathbb {N}}^h$$ , extending known results in numerical semigroup theory and in one-dimensional ring theory, and we apply these results to obtain new results on almost Gorenstein one-dimensional analytically unramified rings.

Tài liệu tham khảo

Barucci, V.: Local rings of minimal length. J. Pure Appl. Algebra 213(6), 991–996 (2009) Barucci, V.: On propinquity of numerical semigroups and one-dimensional local Cohen Macaulay rings. In: Fontana, M., Kabbaj, S., Olberding, O., Swanson, I. (eds.) Commutative Algebra and its Applications, pp. 49–60. de Gruyter, Berlin, New York (2009) Barucci, V., D’Anna, M., Fröberg, R.: Analytically unramified one-dimensional semilocal rings and their value semigroups. J. Pure Appl. Algebra 147, 215–254 (2000) Barucci, V., D’Anna, M., Fröberg, R.: The semigroup of values of a one-dimensional local ring with two minimal primes. Commun. Algebra 28(8), 3607–3633 (2000) Barucci, V., Dobbs, D.E., Fontana, M.: Maximality properties in numerical semigroups and applications to one-dimensional analytically irreducible local domains. Mem. Am. Math. Soc. 125, 598 (1997) Barucci, V., Fröberg, R.: One-dimensional almost Gorenstein rings. J. Algebra 188, 418–442 (1997) Campillo, A., Delgado, F., Gusein-Zade, S.M.: On generators of the semigroup of a plane curve singularity. J. Lond. Math. Soc. 2(60), 420–430 (1999) Campillo, A., Delgado, F., Kiyek, K.: Gorenstein properties and symmetry for one-dimensional local Cohen–Macaulay rings. Manuscr. Math. 83, 405–423 (1994) D’Anna, M.: The canonical module of a one-dimensional reduced local ring. Commun. Algebra 25, 2939–2965 (1997) D’Anna, M., Garcia Sanchez, P., Micale, V., Tozzo, L.: Good semigroups of \({\mathbb{N} }^n\). Int. J. Algebra Comput. 28, 179–206 (2018) D’Anna, M., Guerrieri, L., Micale, V.: The Apéry set of a good semigroup. In: Facchini, A., Fontana, M., Geroldinger, A., Olberding, B, (eds.) Rings and Factorizations. Springer (2020) D’Anna, M., Guerrieri, L., Micale, V.: The type of a good semigroup and the almost symmetric condition. Mediterr. J. Math. 17, 28 (2020) D’Anna, M., Strazzanti, F.: When is \({\mathfrak{m} }:{\mathfrak{m} }\) almost Gorenstein? Rev. Mat. Comput. 36(1), 73–90 (2023) Delgado, F.: The semigroup of values of a curve singularity with several branches. Manuscr. Math. 59, 347–374 (1987) Delgado, F.: Gorenstein curves and symmetry of the semigroup of value. Manuscr. Math. 61, 285–296 (1988) García, A.: Semigroups associated to singular points of plane curves. J. Reine Angew. Math. 336, 165–184 (1982) Goto, S., Matsuoka, N., Phuong, T.T.: Almost Gorenstein rings. J. Algebra 379, 355–381 (2013) Goto, S., Takahashi, R., Taniguchi, N.: Almost Gorenstein rings—towards a theory of higher dimension. J. Pure Appl. Algebra 219(7), 2666–2712 (2015) Jäger, J.: Längenberechnung und kanonische Ideale in eindimensionalen Ringen. Arch. Math. (Basel) 29(5), 504–512 (1977) Korell, P., Schulze, M., Tozzo, L.: Duality on value semigroups. J. Commut. Algebra 11(1), 81–129 (2019) Kunz, E.: The value-semigroup of a one-dimensional Gorenstein ring. Proc. Am. Math. Soc. 25, 748–751 (1970) Maugeri, N., Zito, G.: Embedding dimension of a good semigroup. Numer. Semigroups, Springer INdAM Ser. 40, 197–230 (2019)