Almost everywhere strong summability of Marcinkiewicz means of double Walsh-Fourier series
Tóm tắt
Từ khóa
Tài liệu tham khảo
L. Fejér, Untersuchungen über Fouriersche Reihen, Math. Annalen, 58(1904), 501–569.
S. Fridli and F. Schipp, Strong summability and Sidon type inequalities, Acta Sci. Math. (Szeged) 60(1995), 277–289.
S. Fridli and F. Schipp, Strong approximation via Sidon type inequalities, J. Approx. Theory, 94(1998), 263–284.
O. D. Gabisoniya, Points of strong summability of Fourier series, Mat. Zametki 14(5)(1973), 615–626.
G. Gát, U. Goginava, and G. Tkebuchava, Convergence in measure of logarithmic means of quadratical partial sums of double Walsh-Fourier series, J. Math. Anal. Appl., 323(2006), 535–549.
G. Gát, U. Goginava, and G. Karagulyan, On everywhere divergence of the strong Φ-means of Walsh-Fourier series, J. Math. Anal. Appl., 421(2015), 206–214.
R. Getsadze, On the boundedness in measure of sequences of superlinear operators in classes Lφ(L), Acta Sci. Math. (Szeged), 71(2005), 195–226
V. A. Glukhov, Summation of multiple Fourier series in multiplicative systems, Mat. Zametki, 39(1986), no. 5, 665–673 (in Russian).
U. Goginava, The weak type inequality for the maximal operator of the Marcinkiewicz-Fejér means of the two-dimensional Walsh-Fourier series, J. Approx. Theory, 154(2008), no. 2, 161–180.
U. Goginava and L. Gogoladze, Strong approximation by Marcinkiewicz means of two-dimensional Walsh-Fourier series, Constr. Approx., 35(2012), no. 1, 1–19.
U. Goginava, L. Gogoladze, and G. Karagulyan, The space bmo and exponential almost everywhere summability of two-dimensional Fourier series, Constr. Approx. (to appear).
L. Gogoladze, On the exponential uniform strong summability of multiple trigonometric Fourier series, Georgian Math. J., 16(2009), 517–532.
L. D. Gogoladze, Strong means of Marcinkiewicz type, Soobshch. Akad. Nauk Gruzin. SSR, 102(1981), 293–295 (in Russian).
L. D. Gogoladze, On strong summability almost everywhere, Mat. Sb. (N.S.), 135(177)(1988), no. 2, 158–168, 271 (in Russian); translation in Math. USSR-Sb., 63(1989), no. 1, 153–164.
B. I. Golubov, A. V. Efimov, and V. A. Skvortsov, Series and transformations of Walsh, Moscow, 1987 (in Russian); English translation, Kluwer (Dordrecht, 1991).
G. H. Hardy and J. E. Littlewood, Sur la series de Fourier d’une fonction a carre sommable, Comptes Rendus (Paris) 156(1913), 1307–1309.
G. A. Karagulyan, Everywhere divergent Φ-means of Fourier series, Mat. Zametki 80 (2006), no. 1, 50–59 (in Russian); translation in Math. Notes, 80(2006), no. 1–2, 47–56.
S. V. Konyagin, On the divergence of subsequences of partial sums of multiple trigonometric Fourier series, Trudy MIAN, 190(1989), 102–116.
H. Lebesgue, Recherches sur la sommabilite forte des series de Fourier, Math. Annalen, 61(1905), 251–280.
L. Leindler, On the strong approximation of Fourier series, Acta Sci. Math. (Szeged), 38(1976), 317–324.
L. Leindler, Strong approximation and classes of functions, Mitteilungen Math. Seminar Giessen, 132(1978), 29–38.
L. Leindler, Strong approximation by Fourier series, Akadémiai Kiadó (Budapest, 1985).
J. Marcinkiewicz, Sur la sommabilité forte de séries de Fourier, J. London Math. Soc., 14(1939), 162–168 (in French).
J. Marcinkiewicz, Sur une méthode remarquable de sommation des séries doubles de Fourier, Ann. Scuola Norm. Sup. Pisa, 8(1939), 149–160 (in French).
K. I. Oskolkov, Strong summability of Fourier series, Studies in the theory of functions of several real variables and the approximation of functions, Trudy Mat. Inst. Steklov, 172(1985), 280–290 (in Russian).
V. A. Rodin, The space BMO and strong means of Walsh-Fourier series, Mathematics of the USSR-Sbornik, 74(1993), no 1, 203–218.
F. Schipp, Über die starke Summation von Walsh-Fourier Reihen, Acta Sci. Math. (Szeged), 30(1969), 77–87.
F. Schipp, On strong approximation of Walsh-Fourier series, MTA III. Oszt. Közl., 19(1969), 101–111 (in Hungarian).
F. Schipp and N. X. Ky, On strong summability of polynomial expansions, Analysis Math., 12(1986), 115–128.
P. Sjölin, Convergence almost everywhere of certain singular integrals and multiple Fourier series, Ark. Mat., 9(1971), 65–90.
F. Schipp, W. Wade, P. Simon, and P. Pál, Walsh series. An introduction to dyadic harmonic analysis, Adam Hilger (Bristol-New York, 1990).
V. Totik, On the strong approximation of Fourier series, Acta Math. Sci. Hungar., 35(1980), 151–172.
V. Totik, On the generalization of Fejér’s summation theorem, Functions, Series, Operators; Coll. Math. Soc. J. Bolyai (Budapest) Hungary, 35, North Holland (Amsterdam-Oxford-New-York, 1980), 1195–1199.
Wang Kun Yang, Some estimates for the strong approximation of continuous periodic functions of the two variables by their sums of Marcinkiewicz type, Beijing Shifan Daxue Xuebao (1981), no. 1, 7–22 (in Chinese).
F. Weisz, Strong Marcinkiewicz summability of multi-dimensional Fourier series, Ann. Univ. Sci. Budapest. Sect. Comput., 29(2008), 297–317.
F. Weisz, Convergence of double Walsh-Fourier series and Hardy spaces, Approx. Theory Appl. (N.S.), 17:2(2001), 32–44.
L V. Zhizhiashvili, Generalization of a theorem of Marcinkiewicz, Izvest. AN USSR, ser. matem., 32(1968), 1112–1122 (in Russian).
Y. Zhang and X. He, On the uniform strong approximation of Marcinkiewicz type for multivariable continuous functions, Anal. Theory Appl., 21(2005), 377–384.
A. Zygmund, Trigonometric series. Cambridge Univ. Press (1959).