Almost Non-negative Scalar Curvature on Riemannian Manifolds Conformal to Tori

The Journal of Geometric Analysis - Tập 31 - Trang 11190-11213 - 2021
Brian Allen1
1University of Hartford, Hartford, USA

Tóm tắt

In this article we reduce the geometric stability conjecture for the scalar torus rigidity theorem to the conformal case via the Yamabe problem. Then we are able to prove the case where a sequence of Riemannian manifolds is conformal to a uniformly controlled sequence of flat tori and satisfies the geometric stability conjecture. We are also able to handle the case where a sequence of Riemannian manifolds is conformal to a sequence of constant negative scalar curvature Riemannian manifolds which converge to a flat torus in $$C^1$$ . The full conjecture from the conformal perspective is also discussed as a possible approach to resolving the conjecture.

Tài liệu tham khảo

Allen, B., Hernandez-Vazquez, L., Parise, D., Payne, A., Wang, S.: Warped tori with almost non-negative scalar curvature. Geom. Dedic. (2018) Allen, B., Sormani, C.: Contrasting various notions of convergence in geometric analysis. Pac. J. Math. 303(1), 1–46 (2019) Allen, B., Sormani, C.: Relating notions of convergence in geometric analysis. Nonlinear Anal. 200 (2020) Allen, B., Perales, R., Sormani, C.: Volume above distance below. arXiv:2003.01172 (2020) Anderson, M.: Scalar curvature and geometrization conjectures for 3-manifolds. MSRI Publ. 30, 49–82 (1997) Anderson, M.T.: Scalar curvature, metric degenerations and the static vacuum Einstein equations on 3-manifolds. I. Geom. Funct. Anal. 9(5), 855–967 (1999) Aubin, T.: Équations différentielles non linéaires et probléme de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. (9) 55(3), 269–296 (1976) Bamler, R.: A Ricci flow proof of a result by Gromov on lower bounds for scalar curvature. Math. Res. Lett. 23(2), 325–337 (2016) Bergery, B.: La coubure scalire des variétés riemanniennes, Lecture Notes in Mathematics, Springer, New York, 1981.22 BRIAN ALLEN Besse, A.L.: Einstein Manifolds. Springer, Berlin (1987) Gromov, M.: Dirac and Plateau billiards in domains with corners. Cent. Eur. J. Math. 12(8), 1109–1156 (2014) Gromov, M., Lawson Jr., H.B.: Spin and scalar curvature in the presence of a fundamental group. I. Ann. Math. (2) 111(2), 209–230 (1980) Huang, L.-H., Lee, D.A.: Stability of the positive mass theorem for graphical hypersurfaces of Euclidean space. Commun. Math. Phys. 337(1), 151–169 (2015) Huang, L.-H., Lee, D.A., Sormani, C.: Intrinsic flat stability of the positive mass theorem for graphical hypersurfaces of Euclidean space. J. Reine Angew. Math. 727, 269–299 (2017) Lee, J.M., Parker, T.H.: The yamabe problem. Bull. Am. Math. Soc. 17(1), 37 (1987) Lee, M.-C., Naber, A., Neumayer, R.: dp convergence and \(\varepsilon \)-regularity theorems for entropy and scalar curvature lower bounds (2021). arXiv:2010.15663 Pacheco, A.J.C., Ketterer, C., Perales, R.: Stability of graphical tori with almost nonnegative scalar curvature. Calc. Var. 59(134), 1 (2020) Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differ. Geom. 20(2), 479–495 (1984) Schoen, R.: Variational Theory for the Total Scalar Curvature Functional for Riemannian Metrics and Related Topics. Lecture Notes in Mathematics, vol. 1365, pp. 120–154. Springer, Berlin (1987) Schoen, R., Yau, S.T.: Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature. Ann. Math. (2) 110(1), 127–142 (1979) Sormani, C.: Scalar Curvature and Intrinsic Flat Convergence. Measure Theory in Non-smooth Spaces, pp. 288–338. De Gruyter Press, Berlin (2017) Sormani, C., Wenger, S.: Intrinsic flat convergence of manifolds and other integral current spaces. J. Differ. Geom. 87, 117 (2011) Trudinger, N.S.: Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 22, 265–274 (1968) Yamabe, H.: On a deformation of Riemannian structures on compact manifolds. Osaka Math. J. 12, 21–37 (1960)