Almost Kähler metrics and pp-wave spacetimes
Tóm tắt
Từ khóa
Tài liệu tham khảo
Apostolov, V., Draghici, T.: The curvature and the integrability of almost-Kähler manifolds: a survey. Symplectic Contact Topol. Interact. Perspect. 35, 25–53 (2003)
Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global Lorentzian Geometry, 1st edn. Marcel Dekker Inc., New York (1996)
Besse, A.L.: Einstein Manifolds. Springer, Berlin (2007)
Blau, M: Plane waves and Penrose limits. Lecture Notes for the ICTP School on Mathematics in String and Field Theory (June 2–13, 2003) (2011)
Catalano, D., Defever, F., Deszcz, R., Hotloś, M., Olszak, Z.: A note on almost Kähler manifolds. In: Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, vol. 69, pp. 59–65. Springer (1999)
Cordero, L.A., Fernandez, M., León, M., de León, M.: Examples of compact non-Kähler almost Kähler manifolds. Proc. Am. Math. Soc. 95(2), 280–286 (1985)
Coley, A., Fuster, A., Hervik, S., Pelavas, N.: Higher dimensional VSI spacetimes. Class. Quantum Gravity 23(24), 7431 (2006)
Candela, A.M., Flores, J.L., Sánchez, M.: On general plane fronted waves. Geodesics. Gen. Relativ. Gravitat. 35(4), 631–649 (2003)
Candela, A.M., Sánchez, M.: Geodesics in Semi-Riemannian Manifolds: Geometric Properties and Variational Tools, vol. 4. European Mathematical Society, Zürich (2008)
Eardley, D., Isenberg, J., Marsden, J., Moncrief, V.: Homothetic and conformal symmetries of solutions to Einstein’s equations. Commun. Math. Phys. 106(1), 137–158 (1986)
Flores, J.L., Sánchez, M.: On the geometry of pp-wave type spacetimes. In: Frauendiener, J., Giulini, D.J., Perlick, V. (eds.) Analytical and Numerical Approaches to Mathematical Relativity, pp. 79–98. Springer, Berlin (2006)
Flores, J.L., Sánchez, M.: The Ehlers–Kundt conjecture about gravitational waves and dynamical systems. J. Differ. Equ. 268(12), 7505–7534 (2020)
Jelonek, W.: Some simple examples of almost Kähler non-Kähler structures. Math. Ann. 305(1), 639–649 (1996)
Leistner, T., Schliebner, D.: Completeness of compact Lorentzian manifolds with abelian holonomy. Math. Ann. 364(3–4), 1469–1503 (2016)
Penrose, R.: Any space-time has a plane wave as a limit. In: Cahen, M., Flato, M. (eds.) Differential Geometry and Relativity, pp. 271–275. Springer, Berlin (1976)
Sormani, C., Hill, D.C., Nurowski, P., Bieri, L., Garfinkle, D., Yunes, N.: The mathematics of gravitational waves: a two-part feature. Notices AMS 64(7), 684–707 (2017)
Thurston, W.P.: Some simple examples of symplectic manifolds. Proc. Am. Math. Soc. 55(2), 467–468 (1976)
Walker, A.G.: Canonical form for a Riemannian space with a parallel field of null planes. Q. J. Math. 1(1), 69–79 (1950)
Watson, B.: New examples of strictly almost Kähler manifolds. Proc. Am. Math. Soc. 88(3), 541–544 (1983)
Weinstein, A., Marsden, J.: A comparison theorem for Hamiltonian vector fields. Proc. Am. Math. Soc. 26(4), 629–631 (1970)