Almost Kähler metrics and pp-wave spacetimes

Amir Babak Aazami1, Robert Ream1
1Clark University, Worcester, MA 01610 USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Apostolov, V., Draghici, T.: The curvature and the integrability of almost-Kähler manifolds: a survey. Symplectic Contact Topol. Interact. Perspect. 35, 25–53 (2003)

Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global Lorentzian Geometry, 1st edn. Marcel Dekker Inc., New York (1996)

Besse, A.L.: Einstein Manifolds. Springer, Berlin (2007)

Blau, M: Plane waves and Penrose limits. Lecture Notes for the ICTP School on Mathematics in String and Field Theory (June 2–13, 2003) (2011)

Catalano, D., Defever, F., Deszcz, R., Hotloś, M., Olszak, Z.: A note on almost Kähler manifolds. In: Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, vol. 69, pp. 59–65. Springer (1999)

Cordero, L.A., Fernandez, M., León, M., de León, M.: Examples of compact non-Kähler almost Kähler manifolds. Proc. Am. Math. Soc. 95(2), 280–286 (1985)

Coley, A., Fuster, A., Hervik, S., Pelavas, N.: Higher dimensional VSI spacetimes. Class. Quantum Gravity 23(24), 7431 (2006)

Candela, A.M., Flores, J.L., Sánchez, M.: On general plane fronted waves. Geodesics. Gen. Relativ. Gravitat. 35(4), 631–649 (2003)

Candela, A.M., Sánchez, M.: Geodesics in Semi-Riemannian Manifolds: Geometric Properties and Variational Tools, vol. 4. European Mathematical Society, Zürich (2008)

Ebin, D.G.: Completeness of Hamiltonian vector fields. Proc. Am. Math. Soc. 26(4), 632–634 (1970)

Eardley, D., Isenberg, J., Marsden, J., Moncrief, V.: Homothetic and conformal symmetries of solutions to Einstein’s equations. Commun. Math. Phys. 106(1), 137–158 (1986)

Flores, J.L., Sánchez, M.: On the geometry of pp-wave type spacetimes. In: Frauendiener, J., Giulini, D.J., Perlick, V. (eds.) Analytical and Numerical Approaches to Mathematical Relativity, pp. 79–98. Springer, Berlin (2006)

Flores, J.L., Sánchez, M.: The Ehlers–Kundt conjecture about gravitational waves and dynamical systems. J. Differ. Equ. 268(12), 7505–7534 (2020)

Geroch, R.: Limits of spacetimes. Commun. Math. Phys. 13(3), 180–193 (1969)

Globke, W., Leistner, T.: Locally homogeneous pp-waves. J. Geom. Phys. 108, 83–101 (2016)

Jelonek, W.: Some simple examples of almost Kähler non-Kähler structures. Math. Ann. 305(1), 639–649 (1996)

Kim, I.: Almost-Kähler anti-self-dual metrics. Ann. Global Anal. Geom. 49(4), 369–391 (2016)

Lee, J.M.: Introduction to Riemannian Manifolds, vol. 176, 2nd edn. Springer, Berlin (2018)

Leistner, T., Schliebner, D.: Completeness of compact Lorentzian manifolds with abelian holonomy. Math. Ann. 364(3–4), 1469–1503 (2016)

Olea, B.: Canonical variation of a Lorentzian metric. J. Math. Anal. Appl. 419(1), 156–171 (2014)

Penrose, R.: Techniques of Differential Topology in Relativity. SIAM, Philadelphia (1972)

Penrose, R.: Any space-time has a plane wave as a limit. In: Cahen, M., Flato, M. (eds.) Differential Geometry and Relativity, pp. 271–275. Springer, Berlin (1976)

Petersen, P.: Riemannian Geometry, vol. 171, 3rd edn. Springer, Berlin (2016)

Philip, S.: Penrose limits of homogeneous spaces. J. Geom. Phys. 56(9), 1516–1533 (2006)

Sormani, C., Hill, D.C., Nurowski, P., Bieri, L., Garfinkle, D., Yunes, N.: The mathematics of gravitational waves: a two-part feature. Notices AMS 64(7), 684–707 (2017)

Thurston, W.P.: Some simple examples of symplectic manifolds. Proc. Am. Math. Soc. 55(2), 467–468 (1976)

Walker, A.G.: Canonical form for a Riemannian space with a parallel field of null planes. Q. J. Math. 1(1), 69–79 (1950)

Watson, B.: New examples of strictly almost Kähler manifolds. Proc. Am. Math. Soc. 88(3), 541–544 (1983)

Weinstein, A., Marsden, J.: A comparison theorem for Hamiltonian vector fields. Proc. Am. Math. Soc. 26(4), 629–631 (1970)