Trầm tích phù sa tại khu vực Bol (Lưu vực hồ Chad): những hệ lụy đối với nguồn gốc phong hóa và bối cảnh kiến tạo

Journal of Sedimentary Environments - Tập 8 - Trang 563-586 - 2023
Elisé Sababa1, Armel Zacharie Ekoa Bessa2,3, Beyanu Anehumbu Aye4, Ahounta Shan-Bah Loubahndem1, Moïse Welba1
1Department of Earth Sciences, University of Yaoundé I, Yaoundé, Cameroon
2Institute of Earth Sciences (ISTE), University of Lausanne, Lausanne, Switzerland
3Department of Earth Sciences and Environment, Higher Teacher Training College, University of Bertoua, Bertoua, Cameroon
4Department of Mining and Mineral Engineering, National Higher Polytechnic Institute (NAHPI), The University of Bamenda, Bambili, Cameroon

Tóm tắt

Bài báo này đã thảo luận về vùng nguồn – phong hóa và bối cảnh kiến tạo của các trầm tích phù sa từ Lưu vực hồ Chad (LCB). Bốn hồ sơ với các mức độ khác nhau được đặc trưng bởi sự thay đổi về màu sắc và kết cấu đã được nghiên cứu. Sự biến đổi về kết cấu liên quan đến sự luân phiên giữa các giai đoạn ẩm ướt và khô cằn trong LCB. Quan sát vi kết cấu bằng Kính hiển vi điện tử quét (SEM) cho thấy các hạt từ hơi tròn đến góc cạnh với sự tác động va chạm và đôi khi có các hạt dính vào bề mặt của chúng. Điều này gợi ý về việc vận chuyển nước và những giai đoạn ngắn của sự di chuyển của gió. Phân tích khoáng vật tổng hợp bằng thiết bị X-TRA Thermo-ARL Diffractometer cho thấy rằng các mặt cắt sét và sét có cát được chi phối bởi kaolinit, thạch anh và illit trong khi các mẫu cát chủ yếu bao gồm thạch anh, kaolinit, illit, goethite và rutile. Tính hóa học của toàn bộ mẫu được đánh giá bằng Quang phổ huỳnh quang tia X. Trong số các nguyên tố chính, SiO2, Al2O3 và Fe2O3 có hàm lượng cao nhất, và điều này nhất quán với thành phần khoáng vật. Các trầm tích đã trưởng thành và được phân loại là Fe-shale, Fe-sand và (sub)litharenite. Hành vi của các nguyên tố vi lượng gợi ý nguồn gốc trầm tích, tái chế trầm tích thấp và môi trường lắng đọng giàu oxy. Các nguồn đá trải qua những mức độ phong hóa khác nhau, một lần nữa cho thấy tác động của biến đổi khí hậu đang hoành hành tại LCB. Các biểu đồ phân loại chỉ ra tính chất felsic của các đá nguồn gốc ban đầu trong bối cảnh bờ thụ động.

Từ khóa

#Lưu vực hồ Chad #trầm tích phù sa #phong hóa #kiến tạo #vi kết cấu #khoáng vật học #hóa học đất

Tài liệu tham khảo

Adatte, T., Stinnesbeck, W., Keller, G., Ryder, G., & Fastovsky, D. (1996). Lithostratigraphic and mineralogic correlations of near K/T boundary clastic sediments in northeastern Mexico: Implications for origin and nature of deposition. Geological Society of America Special Papers, 307, 211–226. https://doi.org/10.1130/0-8137-2307-8.211 Ambassa Bela, V., Ekoa Bessa, A. Z., Armstrong-Altrin, J. S., Kamani, F. A., Nya, E. D. B., & Ngueutchoua, G. (2023). Provenance of clastic sediments: A case study from Cameroon. Central Africa. Solid Earth Sciences, 8(2), 105–122. https://doi.org/10.1016/j.sesci.2023.03.002 Armstrong-Altrin, J. S., Lee, Y. I., Kasper-Zubillaga, J. J., Carranza-Edwards, A., Garcia, D., Eby, G. N., Balaram, V., & Cruz-Ortiz, N. L. (2012). Geochemistry of beach sands along the western Gulf of Mexico, Mexico: Implication for provenance. Geochemistry, 72(4), 345–362. https://doi.org/10.1016/j.chemer.2012.07.003 Armstrong-Altrin, J. S., Lee, Y. I., Verma, S. P., & Ramasamy, S. (2004). Geochemistry of sandstones from the upper Miocene Kudankulam formation, southern India: Implications for provenance, weathering, and tectonic setting. Journal of Sedimentary Research, 74(2), 285–297. https://doi.org/10.1306/082803740285 Armstrong-Altrin, J. S., Machain-Castillo, M. L., Rosales-Hoz, L., Carranza-Edwards, A., Sanchez-Cabeza, J. A., & Ruíz-Fernandez, A. C. (2015). Provenance and depositional history of continental slope sediments in the Southwestern Gulf of Mexico unraveled by geochemical analysis. Continental Shelf Research, 95, 15–26. https://doi.org/10.1016/j.csr.2015.01.003 Babechuk, M. G., Widdowson, M., & Kamber, B. S. (2014). Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India. Chemical Geology, 363, 56–75. https://doi.org/10.1016/j.chemgeo.2013.10.027 Badapalli, P. K., Kottala, R. B., Rajasekhar, M., Ramachandra, M., & Krupavathi, C. (2022). Modeling of comparative studies on surface micro morphology of Aeolian, River, Lake, and Beach sand samples using SEM and EDS/EDAX. Materials Today: Proceedings, 50, 655–660. https://doi.org/10.1016/j.matpr.2021.04.049 Begg, G. C., Griffin, W. L., Natapov, L. M., O’Reilly, S. Y., Grand, S. P., O’Neill, C. J., Hronsky, J. M. A., Poudjom-Djomani, Y., Swain, C. J., Deen, T., & Bowden, P. (2009). The lithospheric architecture of Africa: Seismic tomography, mantle petrology, and tectonic evolution. Geosphere, 5, 23–50. https://doi.org/10.1130/GES00179.1 Bhaskar, J. S., Satya, R. G., Borthakur, R., Indu, B. R., & Rashmi, R. B. (2015). Spectroscopic characterization and quantitative estimation of natural weathering of silicates in sediments of Dikrong River, India. International Journal of Modern Physics, 6, 1631–1641. https://doi.org/10.4236/jmp.2015.611164 Bhatia, M. R. (1983). Plate tectonics and geochemical composition of sandstones. Journal of Geology, 91, 611–627. https://www.jstor.org/stable/30064711 Bhatia, M. R., & Crook, K. A. W. (1986). Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92, 181–193. https://doi.org/10.1007/BF00375292 Bhuiyan, M. A. H., Rahman, M. J., Dampare, S. B., & Suzuki, S. (2011). Provenance, tectonics and source weathering of modern fluvial sediments of the Brahmaputra-Jamuna River, Bangladesh: Inference from geochemistry. Journal of Geochemical Exploration, 111, 113–137. https://doi.org/10.1016/j.gexplo.2011.06.008 Black, R. (1992). Mission géologique au Tchad du 14. 1. au 8. 2. 1992. In: Rapport inédit, 15. Bolarinwa, A. T., Idakwo, S. O., & Bish, D. L. (2019). Rare-earth and trace elements and hydrogen and oxygen isotopic compositions of Cretaceous kaolinitic sediments from the Lower Benue Trough, Nigeria: Provenance and paleoclimatic significance. Acta Geochimica, 38(3), 350–363. https://doi.org/10.1007/s11631-019-00328-y Bourman, R. P., & Ollier, C. D. (2002). A critique of the Schellmann definition and classification of ‘laterite.’ CATENA, 47, 117–131. https://doi.org/10.1016/S0341-8162(01)00178-3 Cheverry C. (1974). Contribution à l’étude pédologique des polders du lac Tchad : dynamique des sels en milieu continental subaride dans des sédiments argileux et organiques. Paris: ORSTOM, multigr. Th.: Sci. Nat., Université Louis Pasteur, Strasbourg, 280 p. Condie, K. C. (1993). Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chemical Geology, 104, 1–37. https://doi.org/10.1016/0009-2541(93)90140-E Cox, R., Lowe, D. R., & Cullers, R. L. (1995). The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica Et Cosmochimica Acta, 59, 2919–2940. https://doi.org/10.1016/0016-7037(95)00185-9 Cullers, R. L. (2002). Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA. Chemical Geology, 191, 305–327. https://doi.org/10.1016/S0009-2541(02)00133-X Déruelle, B., Moreau, C., Nkoumbou, C., Kambou, R., Lissom, N., Ghogomu, R. T., & Nono, A. (1991). The Cameroon line: a review. In A. B. Kampuzu & R. T. Lubala (Eds.), Magmatism in extentional structural settings. The phanerozoic african plate (pp. 274–327). Heidelberg: Springer-Verlag, Berlin, Germany. Ekoa Bessa, A. Z., Armstrong-Altrin, J. S., Fuh, G. C. B., Betsi, T., Kelepile, T., & Ndjigu, P.-D. (2021a). Mineralogy and geochemistry of the Ngaoundaba Crater Lake sediments, northern Cameroon: Implications for provenance and trace metals status. Acta Geochimica, 40, 718–738. https://doi.org/10.1007/s11631-021-00463-5 Ekoa Bessa, A. Z., Ndjigui, P. D., Fuh, G. C., Armstrong-Altrin, J. S., & Betsi, T. B. (2021b). Mineralogy and geochemistry of the Ossa lake Complex sediments, Southern Cameroon: Implications for paleoweathering and provenance. Arabian Journal of Geosciences, 14(4), 1–17. https://doi.org/10.1007/s12517-021-06591-9 Fedo, C. M., Nesbitt, H. W., & Young, G. M. (1995). Unraveling the effect of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23, 921–924. https://doi.org/10.1130/0091-7613(1995)023%3c0921:UTEOPM%3e2.3.CO;2 Floyd, P. A., & Leveridge, B. E. (1987). Tectonic environments of the Devonian Gramscatho basin, south Cornwall: Framework mode and geochemical evidence from turbidite sandstones. Journal of the Geological Society of London, 144, 531–542. https://doi.org/10.1144/gsjgs.144.4.0531 Garrels, R. M., & Christ, C. L. (1965). Solutions, Minerals, and Equilibria. Harper and Row. Garzanti, E., Wang, J. G., Vezzoli, G., & Limonta, M. (2016). Tracing provenance and sediment flfluxes in the Irrawaddy River basin (Myanmar). Chemical Geology, 440, 73–90. https://doi.org/10.1016/j.chemgeo.2016.06.010 Guiraud, R., Binks, R. M., Fairhead, J. D., & Wilson, M. (1992). Chronology and geodynamic setting of Cretaceous-Cenozoic rifting in West and Central Africa. Tectonophysics, 213(1–2), 227–234. https://doi.org/10.1016/0040-1951(92)90260-D Hayashi, K., Fujisawa, H., Holland, H. D., & Ohmoto, H. (1997). Geochemistry of 1.9 Ga sedimentary rocks from northeastern Labrador. Canada. Geochimica Et Cosmochimica Acta, 61, 4115–4137. https://doi.org/10.1016/S0016-7037(97)00214-7 Hernández-Hinojosa, V., Montiel-García, P. C., Armstrong-Altrin, J. S., Nagarajan, R., & Kasper-Zubillaga, J. J. (2018). Textural and geochemical characteristics of beach sands along the western Gulf of Mexico. Carpathian Journal of Earth and Environmental Sciences, 13, 161–174. https://doi.org/10.26471/cjees/2018/013/015 Herron, M. M. (1988). Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology, 58, 820–829. https://doi.org/10.1306/212F8E77-2B24-11D7-8648000102C1865D Hossain, H. M. Z., Armstrong-Altrin, J. S., Jamil, A. H. M. N., Rahman, M. M., Hernandez-Coronado, C. J., & Ramos-Vazquez, M. A. (2020). Microtextures on quartz grains in the Kuakata beach, Bangladesh: Implications for provenance and depositional environment. Arabian Journal of Geosciences, 13, 291. https://doi.org/10.1007/s12517-020-5265-4 Hossain, H. M. Z., Kawahata, H., Roser, B. P., Sampei, Y., Manaka, T., & Otani, S. (2017). Geochemical characteristics of modern river sediments in Myanmar and Thailand: Implications for provenance and weathering. Chemistry, 77, 443–458. https://doi.org/10.1016/j.chemer.2017.07.005 Huyan, Y., Yao, W., Xie, X., & Wang, L. (2021). Provenance, source weathering, and tectonics of the Yarlung Zangbo River overbank sediments in Tibetan Plateau, China, using major, trace, and rare earth elements. Geological Journal, 57, 37–51. https://doi.org/10.1002/gj.4282 Jafarzadeh, M., Harami, R. M., Friis, H., Amini, A., Mahboubi, A., & Lenaz, D. (2014). Provenance of the Oligocene-Miocene Zivah Formation, NW Iran, assessed using heavy mineral assemblage and detrital clinopyroxene and detrital apatite analyses. Journal of African Earth Sciences, 89, 56–71. https://doi.org/10.1016/j.jafrearsci.2013.10.005 Jones, B., & Manning, D. C. (1994). Comparison of geochemical indices used for the interpretation of paleo-redox conditions in ancient mudstones. Chemical Geology, 111(1–4), 111–129. https://doi.org/10.1016/0009-2541(94)90085-X Koch, F. W., Wiens, D. A., Nyblade, A. A., Shore, P. J., Tibi, R., Ateba, B., Tabod, C. T., & Nnange, J. M. (2012). Upper-mantle anisotropy beneath the Cameroon Volcanic Line and Congo Craton from shear wave splitting measurements. Geophysical Journal International, 190, 75–86. https://doi.org/10.1111/j.1365-246X.2012.05497.x Krinsley, D. H., & Doornkamp, J. C. (1973). Atlas of quartz sand surface textures (p. 91p). Cambridge University Press. Long, X. P., Yuan, C., Sun, M., Xiao, W. J., Wang, Y. J., Cai, K. D., & Jiang, Y. D. (2012). Geochemistry and Nd isotopic composition of the Early Paleozoic flysch sequence in the Chinese Altai, Central Asia: Evidence for a northward-derived mafic source and insight into Nd model ages in accretionary orogen. Gondwana Research, 22, 554–566. https://doi.org/10.1016/j.gr.2011.04.009 Louis, P. (1970). Contribution géophysique à la connaissance géologique du bassin du lac Tchad. Mémoires ORSTOM. ORSTOM. Mann, D. G., & Droop, S. J. M. (1996). Biodiversity, biogeography and conservation of diatoms. Hydrobiologia, 336, 19–32. https://doi.org/10.1007/BF00010816 Massuel, S. (2001). Modélisation hydrodynamique de la nappe phréatique quaternaire du bassin du lac Tchad (p. 85). DEA Univ Montp. Mathieu, P. (1978). Lexique stratigraphique du Postpaléozoïque du Tchad. Centre ORSTOM de N'Djamena, 62 p Mbale Ngama, E., Sababa, E., Bayiga, E. C., Ekoa Bessa, A. Z., Ndjigui, P. D., & Bilong, P. (2019). Mineralogical and geochemical characterization of the unconsolidated sands from the Mefou River terrace, Yaounde area, Southern Cameroon. Journal of African Earth Sciences, 159, 103570. https://doi.org/10.1016/j.jafrearsci.2019.103570 Mbanga Nyobe, J., Sababa, E., Bayiga, E. C., & Ndjigui, P.-D. (2018). Geochemistry and provenance of rutile-bearing fine-grained sediments in the Lobo watershed from the Neoproterozoic Pan-African belt, Southern Cameroon. Comptes Rendus Géoscience, 350, 119–129. https://doi.org/10.1016/j.crte.2017.08.003 Mbog, M. B., Ngon Ngon, G. F., Tassongwa, B., Tehna, N., Lotse Tedontsah, V. P., & Etame, J. (2022). Clay deposits of Ngoma (Douala sedimentary subbasin Cameroon, Central Africa): A provenance study. Arabian Journal of Geosciences, 15, 1122. https://doi.org/10.1007/s12517-022-10130-5 McLennan, S. M., Hemming, S., McDaniel, D. K., & Hanson, G. N. (1993). Geochemical approaches to sedimentation, provenance, and tectonics. Processes Controlling the Composition of Clastic Sediments. Geological Society of America Special Papers. https://doi.org/10.1130/SPE284-p21 Mohtar, W. H. M. W., Bassa, S. A., & Porhemmat, M. (2017). Grain size analysis of surface fluvial sediments in rivers in Kelantan. Malaysia. Sains Malaysia, 46(5), 685–693. https://doi.org/10.17576/jsm-2017-4605-02 Moreno, T., Querol, X., Castillo, S., Alastuey, A., Cuevas, E., Herrmann, L., & Gibbons, W. (2006). Geochemical variations in aeolian mineral particles from the Sahara-Sahel Dust Corridor. Chemosphere, 65(2), 261–270. https://doi.org/10.1016/j.chemosphere.2006.02.052 Mothersill, J. S. (1975). Lake Chad; geochemistry and sedimentary aspects of a shallow polymictic lake. Journal of Sedimentary Research, 45(1), 295–309. https://doi.org/10.1306/212F6D48-2B24-11D7-8648000102C1865D Moussa, A., Novello, A., Lebatard, A.-E., Decarreau, A., Fontaine, C., Barboni, D., Sylvestre, F., Boulès, D., Paillès, C., Buchet, G., Duringer, P., Ghienne, J.-F., Maley, J., Mazur, J.-C., Roquin, C., Schuster, M., Vignaud, P., & Brunet, M. (2016). Lake Chad sedimentation and environments during the late Miocene and Pliocene: New evidence from mineralogy and chemistry of the Bol core sediments. Journal of African Earth Sciences, 118, 192–204. https://doi.org/10.1016/j.jafrearsci.2016.02.023 Nagarajan, R., Armstrong-Altrin, J. S., Kessler, F. L., Hidalgo-Moral, E. L., Dodge-Wan, D., & Taib, N. I. (2015). Provenance and tectonic setting of Miocene siliciclastic sediments, Sibuti Formation, northwestern Borneo. Arabian Journal of Geosciences, 8(10), 8549–8565. https://doi.org/10.1007/s12517-015-1833-4 Nagarajan, R., Madhavaraju, J., Nagendra, R., Armstrong-Altrin, J. S., & Moutte, J. (2007). Geochemistry of Neoproterozoic shales of Rabanpalli Formation, Bhima basin, northern Karnataka, southern India: Implications for provenance and paleoredox conditions. Revista Mexicana De Ciencias Geológicas, 24, 150–160. Nagarajan, R., Roy, P. D., Kessler, F. L., Jong, J., Dayong, V., & Jonathan, M. P. (2017). An integrated study of geochemistry and mineralogy of the Upper Tukau Formation, Borneo Island (East Malaysia): Sediment provenance, depositional setting and tectonic implications. Journal of African Earth Sciences, 143, 77–94. https://doi.org/10.1016/j.jseaes.2017.04.002 Ndjigui, P.-D., Onana, V. L., Sababa, E., & Bayiga, E. C. (2018). Mineralogy and geochemistry of the Lokoundje alluvial clays from the Kribi deposits, Cameroonian Atlantic coast: Implications for their origin and depositional environment. Journal of African Earth Sciences, 143, 102–117. https://doi.org/10.1016/j.jafrearsci.2018.03.023 Nesbitt, H. W., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 279, 715–717. https://doi.org/10.1038/299715a0 Nesbitt, H. W., & Young, G. M. (1984). Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica Et Cosmochimica Acta, 48, 1523–1534. https://doi.org/10.1016/0016-7037(84)90408-3 Ngagoum Kontchipe, Y. S., Temgo Sopie, F., Ngueutchoua, G., Sonfack, A. N., Nkouathio, D. G., Tchatchueng, R., Kenfack Nguemo, G. R., & Njanko, T. (2021). Mineralogy and geochemistry study of the Nyong River sediments, SW Cameroon: Implications for provenance, weathering, and tectonic setting. Arabian Journal of Geosciences, 14, 1018. https://doi.org/10.1007/s12517-021-07145-9 Ngako, V., Njonfang, E., Tongwa Aka, F., Affaton, P., & Metuk Nnange, J. (2006). The North-South Paleozoic to Quaternary trend of alkaline magmatism from Niger-Nigeria to Cameroun: Complex interaction between hotspots and Precambrian faults. Journal of African Earth Sciences, 45(3), 241–256. https://doi.org/10.1016/j.jafrearsci.2006.03.003 Ngueutchoua, G., Ekoa Bessa, A. Z., Eyong, J. T., Demanou Zandjio, D., Baba Djaoro, H., & Tchami Nfada, L. (2019). Geochemistry of cretaceous fine-grained siliciclastic rocks from Upper Mundeck and Logbadjeck Formations, Douala sub-basin, SW Cameroon: Implications for weathering intensity, provenance, paleoclimate, redox condition, and tectonic setting. Journal of African Earth Sciences, 152, 215–236. https://doi.org/10.1016/j.jafrearsci.2019.02.021 Olivry, J.-C., Chouret, A., Vuillaume, G., Lemoalle, J., & Bricquet, J. P. (1996). Hydrologie du lac Tchad. Monographie hydrologique 12, 302 p Pias, J. (1962). Les sols du moyen et bas Logone, du bas Chari, des régions riveraines du lac Tchad et du Bahr-el Ghazal. Mém. Orstom 2, 438 p. Pias, J. (1970). La végétation du Tchad: ses rapports avec les sols, variations paléobotaniques au quaternaire. Contribution à la connaissance du bassin tchadien 6, 45 p Picard, M. D. (1971). Classification of fine-grained sedimentary rocks. Journal of Sedimentary Research, 41(1), 179–195. https://doi.org/10.1306/74D7221B-2B21-11D7-8648000102C1865D Pourmand, A., Dauphas, N., & Ireland, T. J. (2012). A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc and Y: Revising CI-chondrite and Post-Archean Australian Shale (PAAS) abundances. Chemical Geology, 291, 38–54. https://doi.org/10.1016/j.chemgeo.2011.08.011 Reusch, A. M., Nyblade, A. A., Wiens, D. A., Shore, P. J., Ateba, B., Tabod, C. T., & Nnange, J. M. (2010). Upper mantle structure beneath Cameroon from body wave tomography and the origin of the Cameroon Volcanic Line. Geochemistry Geophysics Geosystems, 11, Q10W07. https://doi.org/10.1029/2010GC003200 Rieu, M. (1975). Les polders du lac Tchad milieu naturel et formation des sols conséquences de la sécheresse. Notes Techniques Du Centre ORSTOM De N’djamena, 3, 2–18. Roder, J. (1964). Régimes hydrologiques de l’Afrique Noire à l’ouest du Congo. ORSTOM. Roser, B. P., Cooper, R. A., Nathan, S., & Tulloch, A. J. (1996). Reconnaissance sandstone geochemistry, provenance and tectonic setting of the lower Paleozoic terranes of the West Coast and Nelson, New Zealand. New Zealand Journal of Geology & Geophysics, 39, 1–16. https://doi.org/10.1080/00288306.1996.9514690 Roser, B. P., & Korsch, R. J. (1986). Determination of tectonic setting of sandstones and mudstones suites using SiO2 content and K2O/Na2O ratio. The Journal of Geology, 94, 635–650. https://doi.org/10.1086/629071 Roser, B. P., & Korsch, R. J. (1988). Provenance signatures of sandstone-mudstone suites determined using discrimination function analysis of major element data. Chemical Geology, 67(1–2), 119–139. https://doi.org/10.1016/0009-2541(88)90010-1 Sababa, E., Essomba Owona, L. G., Temga, J. P., & Ndjigui, P.-D. (2021). Petrology of weathering materials developed on granites in Biou area, North-Cameroon: implication for rare-earth elements (REE) exploration in semi-arid regions. Heliyon, 7(12), e08581. https://doi.org/10.1016/j.heliyon.2021.e08581 Sababa, E., Mbesse, C. O., Wandji Mouko, C. N., Ekoa Bessa, A. Z., & Ndjigui, P.-D. (2022). Geochemistry of stream sediments from Eséka area (SW Cameroon): Implications for surface process assessment and precious metals (Au, Pd, and Pt) exploration. Journal of Sedimentary Environments, 7, 43–66. https://doi.org/10.1007/s43217-021-00082-3 Schuster, M., Duringer, P., Ghienne, J.-F., Roquin, C., Sepulchre, P., Moussa, A., Lebatard, A.-E., Mackaye, H. T., Likius, A., Vignaud, P., & Brunet, M. (2009). Chad Basin: Paleoenvironments of the Sahara since the Late Miocene. Comptes Rendus Géoscience, 341(8–9), 603–611. https://doi.org/10.1016/j.crte.2009.04.001 Schuster, M., Roquin, C., Duringer, P., Brunet, M., Caugy, M., Fontugne, M., Mackaye, H. T., Vignaud, P., & Ghienne, J.-F. (2005). Holocene lake Mega-Chad palaeoshorelines from space. Quaternary Science Reviews, 24(16–17), 1821–1827. https://doi.org/10.1016/j.quascirev.2005.02.001 Sebag, D., Durand, A., Garba, Z., & Verrecchia, E. P. (2013). Paleohydrological Reconstruction from late Holocene records in Interdune Lakes (N’Guigmi, Northern Bank of the Lake Chad, Niger). Open Journal of Geology, 3(2), 143–155. https://doi.org/10.4236/ojg.2013.32018 Sebag, D., Verrecchia, E. P., Lee, S. J., & Durand, A. (2001). The natural hydrous sodium silicates from the northern bank of Lake Chad: Occurrence, petrology and genesis. Sedimentary Geology, 139(1), 15–31. https://doi.org/10.1016/S0037-0738(00)00152-4 Shaw, D. M. (1968). A review of K–Rb fractionation trends by covariance analysis. Geochimica Et Cosmochimica Acta, 32(6), 573–602. https://doi.org/10.1016/0016-7037(68)90050-1 Shephard, F. P., & Young, R. (1961). Distinguishing between beach and dune sands. Journal of Sedimentary Research, 31(2), 196–214. https://doi.org/10.1306/74D70B37-2B21-11D7-8648000102C1865D Smith, B. J., & Whalley, W. B. (1981). Late Quaternary drift deposits of north central Nigeria examined by scanning electron microscopy. CATENA, 8(1), 345–367. https://doi.org/10.1016/S0341-8162(81)80023-9 Suttner, L., & Dutta, P. (1986). Alluvial sandstone composition and paleoclimate, I. Framework mineralogy. Journal of Sedimentary Research, 56(3), 329–345. https://doi.org/10.1306/212F8909-2B24-11D7-8648000102C1865D Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution (Vol. 312). Blackwell Scientific Publications. Tchouatcha, M. S., Kassi Kassi, P., Mbesse, C. O., Kuété Noupa, R., Junior Mam, W., & Préat, A. (2022). Geochemistry of onshore deposits from Rio del Rey sub-basin of the western Atlantic margin of Cameroon (Coastal basin, Southwest Cameroon): Provenance and environments of sedimentation. Environmental Earth Sciences, 81, 321. https://doi.org/10.1007/s12665-022-10440-7 Tchouatcha, M. S., Kouske, A. P., Azinwi Tamfuh, P., Tchameni Ngouabe, E. G., & Chuye Yango, G. (2023). Provenance, depositional process, and tectonic setting of gold placer from the Bétaré-Oya Gold District (East-Cameroon, Central Africa) along the Precambrian Sanaga fault. International Journal of Sediment Research, 38(4), 576–596. https://doi.org/10.1016/j.ijsrc.2023.03.002 Tian, D. Z., Leng, B. C., & Zhang, X. C. (2020). Provenance and tectonic setting of the Neoproterozoic meta-sedimentary rocks at southeastern Tibetan Plateau: Implications for the tectonic affinity of Yidun terrane. Precambrian Research, 344, 105736. https://doi.org/10.1016/j.precamres.2020.105736 Torsvik, T. H., Rousse, S., Labails, C., & Smethurst, M. A. (2009). A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin. Geophysical Journal International, 177(3), 1315–1333. https://doi.org/10.1111/j.1365-246X.2009.04137.x Toteu, S. F., Penaye, J., & Djomani, Y. P. (2004). Geodynamic evolution of the Pan-African belt in central Africa with special reference to Cameroon. Canadian Journal of Earth Sciences, 41(1), 73–85. https://doi.org/10.1139/e03-079 Toteu, S. F., Van Schmus, W. R., Penaye, J., & Michard, A. (2001). New U-Pb and Sm-Nd datafrom north-central Cameroon and its bearing on the pre-Pan African history of centralAfrica. Precambrian Research, 108(1–2), 45–73. https://doi.org/10.1016/S0301-9268(00)00149-2 Verma, S. P. (2012). Geochemometrics. Revista Mexicana De Ciencias Geológicas, 29, 276–298. Verma, S. P., & Armstrong-Altrin, J. S. (2013). New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chemical Geology, 355, 117–133. https://doi.org/10.1016/j.chemgeo.2013.07.014 Verma, S. P., & Armstrong-Altrin, J. S. (2016). Geochemical discrimination of siliciclastic sediments from active and passive margin settings. Sedimentary Geology, 332, 1–12. https://doi.org/10.1016/j.sedgeo.2015.11.011 Whalen, J. B., Currie, K. L., & Chappell, B. W. (1987). A-type granites: Geo-chemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95, 407–419. https://doi.org/10.1007/BF00402202 Wignall, P. B., & Myers, K. J. (1988). Interpreting the benthic oxygen levels in mud rocks, a new approach. Geology, 16, 452–455. https://doi.org/10.1130/0091-7613(1988)016%3c0452:IBOLIM%3e2.3.CO;2 Workman, R. K., & Hart, S. R. (2005). Major and trace element composition of the depleted MORB mantle (DMM). Earth Planetary Science Letters, 231(1–2), 53–72. https://doi.org/10.1016/j.epsl.2004.12.005 Zaid, S. M., & Al Gahtani, F. (2015). Provenance, diagenesis, tectonic setting, and geochemistry of Hawkesbury Sandstone (Middle Triassic), southern Sydney Basin. Australia. Turkish Journal of Earth Sciences, 24(1), 72–98. https://doi.org/10.3906/yer-1407-5