Alloying behaviour, thermal stability and phase evolution in quinary AlCoCrFeNi high entropy alloy
Tóm tắt
Từ khóa
Tài liệu tham khảo
Inoue, 2000, Bulk amorphous FC20 (Fe-C-Si) alloys with small amounts of B and their crystallized structure and mechanical properties, Acta Mater., 48, 1383, 10.1016/S1359-6454(99)00394-8
Ranganathan, 2003, Alloyed pleasures: multiatomic cocktails, Curr. Sci., 85, 1404
Yeh, 2004, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater., 6, 303
Basu, 2008, Glass forming ability: Miedema approach to (Zr, Ti, Hf)- (Cu-Ni) binary and ternary alloy, J. Alloys Compd., 465, 163, 10.1016/j.jallcom.2007.10.131
Tung, 2007, On the elemental effect of AlCoCrCuFeNi high-entropy alloy system, Mater. Lett., 61, 1, 10.1016/j.matlet.2006.03.140
Hsu, 2004, Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition, Metall. Mater. Trans. A, 35, 1465, 10.1007/s11661-004-0254-x
Tong, 2005, Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multi-principal elements, Metall. Mater. Trans. A, 36, 881, 10.1007/s11661-005-0283-0
Cantor, 2004, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375–377, 213, 10.1016/j.msea.2003.10.257
Zhang, 2014, Progress in Materials Science Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 61, 1, 10.1016/j.pmatsci.2013.10.001
Yeh, 2006, Recent progress in high-entropy alloys, Ann. Chim. Sci. Des Mater., 31, 633, 10.3166/acsm.31.633-648
Sriharitha, 2014, Alloying, thermal stability and strengthening in spark plasma sintered AlxCoCrCuFeNi high entropy alloys, J. Alloys Compd., 583, 419, 10.1016/j.jallcom.2013.08.176
Mukhopadhyay, 2015, High entropy alloys: a renaissance in physical metallurgy, Curr. Sci., 109, 665
Mridha, 2013, Processing and consolidation of nanocrystalline Cu-Zn-Ti-Fe-Cr high-entropy alloys via mechanical alloying, Metall. Mater. Trans. A Phys. Metall Mater. Sci., 44, 4532, 10.1007/s11661-013-1824-6
Wang, 2014, Mechanical alloying and spark plasma sintering of CoCrFeNiMnAl high-entropy alloy, Adv. Powder Technol., 25, 1334, 10.1016/j.apt.2014.03.014
Varalakshmi, 2010, Formation and stability of equiatomic and non equiatomic nanocrystalline CuNiCoZnAlTi high-entropy alloys by mechanical alloying, Metall. Mater. Trans. A Phys. Metall Mater. Sci., 41, 2703, 10.1007/s11661-010-0344-x
Wang, 2008, Microstructure and compressive properties of AlCrFeCoNi high entropy alloy, Mater. Sci. Eng. A, 491, 154, 10.1016/j.msea.2008.01.064
Mohanty, 2017, Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: microstructure and mechanical properties, Mater. Sci. Eng. A, 679, 299, 10.1016/j.msea.2016.09.062
Ji, 2014, Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high-entropy alloy, J. Alloys Compd., 589, 61, 10.1016/j.jallcom.2013.11.146
Shen, 2002, Spark plasma sintering of alumina, J. Am. Ceram. Soc., 85, 1921, 10.1111/j.1151-2916.2002.tb00381.x
Colombini, 2017, High entropy alloys obtained by field assisted powder metallurgy route: SPS and microwave heating, Mater. Chem. Phys.
Veronesi, 2016, Microwave-assisted synthesis of Si-modified Mn25FexNi25Cu(50−x) high entropy alloys, Mater. Lett., 162, 277, 10.1016/j.matlet.2015.10.035
Thostenson, 1999, Microwave processing: fundamentals and applications, composites: part A, Appl. Sci. Manuf., 30, 1055, 10.1016/S1359-835X(99)00020-2
Oghbaei, 2010, Microwave versus conventional sintering: a review of fundamentals, advantages and applications, J. Alloys Compd, 494, 175, 10.1016/j.jallcom.2010.01.068
Upadhyaya, 2007, Microwave sintering of W-Ni-Fe alloy, Scr. Mater., 56, 5, 10.1016/j.scriptamat.2006.09.010
Yang, 2004, Microwave process for sintering of uranium dioxide, J. Nucl. Mater., 325, 210, 10.1016/j.jnucmat.2003.12.003
Fu, 2013, Entropy alloy processed by spark plasma sintering, J. Alloys Compd., 553, 316, 10.1016/j.jallcom.2012.11.146
Suryanarayana, 2001, The science and technology of mechanical alloying, Mater. Sci. Eng. A, 304, 151, 10.1016/S0921-5093(00)01465-9
Koundinya, 2013, Phase evolution and thermal analysis of nanocrystalline AlCrCuFeNiZn high entropy alloy produced by mechanical alloying, J. Mater. Eng. Perform., 22, 3077, 10.1007/s11665-013-0580-5
Shivam, 2018, Mechno-chemical synthesis, thermal stability and phase evolution in AlCoCrFeNiMn high entropy alloy, J. Alloys Compd., 757, 87, 10.1016/j.jallcom.2018.05.057
Manzoni, 2013, Phase separtion in equiatomic AlCoCrFeNi high entropy alooy, Ultramicroscopy, 132, 212, 10.1016/j.ultramic.2012.12.015
Yang, 2012, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater. Chem. Phys., 132, 233, 10.1016/j.matchemphys.2011.11.021
Miedema, 1980, Cohesion in alloys—fundamentals of a semi-empirical model, Phys. B, 100, 1, 10.1016/0378-4363(80)90054-6
Zhang, 2010, Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying, J. Alloys Compd., 495, 33, 10.1016/j.jallcom.2009.12.010
Praveen, 2012, Alloying behaviour in multicomponent AlCoCrCuFe and NiCoCeCuFe high entropy alloys, Mater. Sci. Eng. A, 534, 83, 10.1016/j.msea.2011.11.044