Alloying behaviour, thermal stability and phase evolution in quinary AlCoCrFeNi high entropy alloy

Advanced Powder Technology - Tập 29 Số 9 - Trang 2221-2230 - 2018
Vikas Shivam1, Joysurya Basu1, Vivek Kumar Pandey1, Yagnesh Shadangi1, N.K. Mukhopadhyay1
1Department of Metallurgical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Inoue, 2000, Bulk amorphous FC20 (Fe-C-Si) alloys with small amounts of B and their crystallized structure and mechanical properties, Acta Mater., 48, 1383, 10.1016/S1359-6454(99)00394-8

Ranganathan, 2003, Alloyed pleasures: multiatomic cocktails, Curr. Sci., 85, 1404

Yeh, 2004, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater., 6, 303

Basu, 2008, Glass forming ability: Miedema approach to (Zr, Ti, Hf)- (Cu-Ni) binary and ternary alloy, J. Alloys Compd., 465, 163, 10.1016/j.jallcom.2007.10.131

Tung, 2007, On the elemental effect of AlCoCrCuFeNi high-entropy alloy system, Mater. Lett., 61, 1, 10.1016/j.matlet.2006.03.140

Hsu, 2004, Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition, Metall. Mater. Trans. A, 35, 1465, 10.1007/s11661-004-0254-x

Tong, 2005, Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multi-principal elements, Metall. Mater. Trans. A, 36, 881, 10.1007/s11661-005-0283-0

Cantor, 2004, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375–377, 213, 10.1016/j.msea.2003.10.257

B.S. Murty, J.W. Yeh, S. Ranganathan, High Entropy Alloys, 2014

Zhang, 2014, Progress in Materials Science Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 61, 1, 10.1016/j.pmatsci.2013.10.001

Yeh, 2006, Recent progress in high-entropy alloys, Ann. Chim. Sci. Des Mater., 31, 633, 10.3166/acsm.31.633-648

Sriharitha, 2014, Alloying, thermal stability and strengthening in spark plasma sintered AlxCoCrCuFeNi high entropy alloys, J. Alloys Compd., 583, 419, 10.1016/j.jallcom.2013.08.176

Mukhopadhyay, 2015, High entropy alloys: a renaissance in physical metallurgy, Curr. Sci., 109, 665

Mridha, 2013, Processing and consolidation of nanocrystalline Cu-Zn-Ti-Fe-Cr high-entropy alloys via mechanical alloying, Metall. Mater. Trans. A Phys. Metall Mater. Sci., 44, 4532, 10.1007/s11661-013-1824-6

Wang, 2014, Mechanical alloying and spark plasma sintering of CoCrFeNiMnAl high-entropy alloy, Adv. Powder Technol., 25, 1334, 10.1016/j.apt.2014.03.014

Varalakshmi, 2010, Formation and stability of equiatomic and non equiatomic nanocrystalline CuNiCoZnAlTi high-entropy alloys by mechanical alloying, Metall. Mater. Trans. A Phys. Metall Mater. Sci., 41, 2703, 10.1007/s11661-010-0344-x

Koch, 2017, Nanocrystalline high-entropy alloys, J. Mater. Res., 32, 3435, 10.1557/jmr.2017.341

Wang, 2008, Microstructure and compressive properties of AlCrFeCoNi high entropy alloy, Mater. Sci. Eng. A, 491, 154, 10.1016/j.msea.2008.01.064

Mohanty, 2017, Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: microstructure and mechanical properties, Mater. Sci. Eng. A, 679, 299, 10.1016/j.msea.2016.09.062

Ji, 2014, Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high-entropy alloy, J. Alloys Compd., 589, 61, 10.1016/j.jallcom.2013.11.146

Shen, 2002, Spark plasma sintering of alumina, J. Am. Ceram. Soc., 85, 1921, 10.1111/j.1151-2916.2002.tb00381.x

Colombini, 2017, High entropy alloys obtained by field assisted powder metallurgy route: SPS and microwave heating, Mater. Chem. Phys.

Veronesi, 2016, Microwave-assisted synthesis of Si-modified Mn25FexNi25Cu(50−x) high entropy alloys, Mater. Lett., 162, 277, 10.1016/j.matlet.2015.10.035

Thostenson, 1999, Microwave processing: fundamentals and applications, composites: part A, Appl. Sci. Manuf., 30, 1055, 10.1016/S1359-835X(99)00020-2

Oghbaei, 2010, Microwave versus conventional sintering: a review of fundamentals, advantages and applications, J. Alloys Compd, 494, 175, 10.1016/j.jallcom.2010.01.068

Upadhyaya, 2007, Microwave sintering of W-Ni-Fe alloy, Scr. Mater., 56, 5, 10.1016/j.scriptamat.2006.09.010

Yang, 2004, Microwave process for sintering of uranium dioxide, J. Nucl. Mater., 325, 210, 10.1016/j.jnucmat.2003.12.003

Fu, 2013, Entropy alloy processed by spark plasma sintering, J. Alloys Compd., 553, 316, 10.1016/j.jallcom.2012.11.146

Suryanarayana, 2001, The science and technology of mechanical alloying, Mater. Sci. Eng. A, 304, 151, 10.1016/S0921-5093(00)01465-9

Koundinya, 2013, Phase evolution and thermal analysis of nanocrystalline AlCrCuFeNiZn high entropy alloy produced by mechanical alloying, J. Mater. Eng. Perform., 22, 3077, 10.1007/s11665-013-0580-5

Shivam, 2018, Mechno-chemical synthesis, thermal stability and phase evolution in AlCoCrFeNiMn high entropy alloy, J. Alloys Compd., 757, 87, 10.1016/j.jallcom.2018.05.057

Manzoni, 2013, Phase separtion in equiatomic AlCoCrFeNi high entropy alooy, Ultramicroscopy, 132, 212, 10.1016/j.ultramic.2012.12.015

Yang, 2012, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater. Chem. Phys., 132, 233, 10.1016/j.matchemphys.2011.11.021

Miedema, 1980, Cohesion in alloys—fundamentals of a semi-empirical model, Phys. B, 100, 1, 10.1016/0378-4363(80)90054-6

Zhang, 2010, Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying, J. Alloys Compd., 495, 33, 10.1016/j.jallcom.2009.12.010

Praveen, 2012, Alloying behaviour in multicomponent AlCoCrCuFe and NiCoCeCuFe high entropy alloys, Mater. Sci. Eng. A, 534, 83, 10.1016/j.msea.2011.11.044

Basu, 2003, Bulk metallic glasses: a new class of engineering materials, Sadhana, 28, 783, 10.1007/BF02706459