Allosteric properties of the oxyphenbutazone-human serum albumin complex
Tóm tắt
The conformational change of albumin which occurs around physiological pH, the so-called N-B transition, has been studied by measuring the induced circular dichroic signal of the oxyphenbutazone-albumin complex. This N-B transition has been characterized by a set of parameters according to the two-state model of Monod, Wyman and Changeux. The influence of calcium ions on the N-B transition has been interpreted in terms of a change in some of the parameters describing the two-state model,viz. a decrease of the apparent pK value of the histidines and of the apparent allosteric constant of the oxyphenbutazone-albumin complex. This apparent pK change increases with increasing Ca2+ concentration, whereas the apparent allosteric constant approaches a final value at 5 mM Ca2+. From acid-base titration curves of albumin in the presence and in the absence of Ca2+ it could be concluded that in the presence of Ca2+ less histidines are titratable than in the absence of Ca2+. Assuming that these histidines are not involved in the N-B transition it follows that at least four to five histidines are involved in the N-B transition.
Tài liệu tham khảo
Anton, A.H., andW.T. Corey (1971)Acta Pharmacol. 29, Suppl. 3, 134–151.
Chignell, C.F., Ed. (1976)Methods in Pharmacology, Vol. 11. Meredith Corporation, New York, 138–140.
Dröge, J.H.M., L.H.M. Janssen andJ. Wilting (1982a)Biochem. Pharmacol. 31, 3775–3779.
Dröge, J.H.M., J. Wilting andL.H.M. Janssen (1982b)Biochem. Pharmacol. 31, 3781–3786.
Elbary, A.A., J.J. Vallner andC.W. Whitworth (1981)Acta Pharm. Suec. 18, 379–390;Ibidem (1982)J. Pharm. Sci. 71, 241–244.
Fasman, G.D., Ed. (1976)CRC Handbook of Biochemistry and Molecular Biology, Physical and Chemical Data I. CRC Press Inc., Cleveland, 319.
Fehske, K.J., W.E. Müller andU. Wollert (1981)Biochem. Pharmacol. 30, 687–692.
Fersht, A. (1977)Enzyme Structure and Mechanism. W.H. Freeman and Company, Reading/San Francisco, 219.
Fleitman, J., andJ.H. Perrin (1982)Int. J. Pharm. 11, 227–236.
Gillette, J.R. (1973)Ann. N.Y. Acad. Sci. 226, 6–17.
Harmsen, B.J.M., S.H. De Bruin, L.H.M. Janssen, J.F. Rodrigues De Miranda andG.A.J. Van Os (1971)Biochemistry 10, 3217–3221.
Janssen, L.H.M., andM.T. Van Wilgenburg (1978)Mol. Pharmacol. 14, 884–889.
Janssen, L.H.M., S.H. De Bruin andG.A.J. Van Os (1970)Biochim. Biophys. Acta 221, 214–227.
Janssen, L.H.M., M.T. Van Wilgenburg andJ. Wilting (1981)Biochim. Biophys. Acta 669, 244–250.
Leonard, W.J., K.K. Vijai andJ.F. Foster (1963)J. Biol. Chem. 238, 1984–1988.
Martin, B.K. (1975)Nature 207, 274–276.
Monod, J., J. Wyman andJ.-P. Changeux (1965)J. Mol. Biol. 12, 88–118.
Nikkel, H.J., andJ.F. Foster (1971)Biochemistry 10, 4479–4486.
Patel, I.H., andR.H. Levy (1979)Epilepsia 20, 85–90.
Perrin, J.H., andD.A. Nelson (1974)Biochem. Pharmacol. 23, 3139–3145.
O'Rilly, R.A., andP.M. Aggeler (1970)Pharmacol. Rev. 22, 35–96.
Rubin, M.M., andJ.-P. Changeux (1966)J. Mol. Biol. 21, 265–274.
Russu, I.M., N.T. Ho andC. Ho (1982)Biochemistry 21, 5031–5043.
Schwartz, P.A., C.T. Rhodes andD.S. Greene (1981)Pharmacology 22, 364–370.
Sjöholm, I., B. Ekman, A. Kober, I. Ljungstedt-Påhlman, B. Seiving andI. Sjödin (1979)Mol. Pharmacol. 16, 767–777.
Van Der Giesen, W.F., andJ. Wilting (1983)Biochem. Pharmacol. 32, 281–285.
Weast, R.C., Ed. (1978)CRC Handbook of Chemistry and Physics. CRC Press Inc., Cleveland, D-149.
Wilting, J., M.M. Weideman, A.C.J. Roomer andJ.H. Perrin (1979)Biochim. Biophys. Acta 579, 469–473.
Wilting, J., W.F. Van Der Giesen, L.H.M. Janssen, M.M. Weideman, M. Otagiri andJ.H. Perrin (1980a)J. Biol. Chem. 255, 3032–3037.
Wilting, J., B.J. 'T Hart andJ.J. De Gier (1980b)Biochim. Biophys. Acta 626, 291–298.
Wilting, J., W.F. Van Der Giesen andL.H.M. Janssen (1981)Biochem. Pharmacol. 30, 1025–1031.
Wosilait, W.D., andP. Ryan (1979)Res. Commun. Chem. Pathol. Pharmacol. 25, 577–584.
Wyman, J. Jr. (1964)Adv. Protein Chem. 19, 223–286.
Zurawski, V.R. Jr., andJ.F. Foster (1974)Biochemistry 13, 3465–3471.