Allosteric Activation of PI3Kα Results in Dynamic Access to Catalytically Competent Conformations

Structure - Tập 28 - Trang 465-474.e5 - 2020
Mayukh Chakrabarti1, Sandra B. Gabelli1,2,3, L. Mario Amzel1
1Structural Enzymology and Thermodynamics Group, Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, 606 WBSB 608, Baltimore, MD 21205, USA
2Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Building 844, Baltimore, MD 21205, USA
3Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA

Tài liệu tham khảo

Abraham, 2015, GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX, 1–2, 19, 10.1016/j.softx.2015.06.001 Bakan, 2011, Computational generation inhibitor-bound conformers of p38 MAP kinase and comparison with experiments, Pac. Symp. Biocomput., 181 Bakan, 2011, ProDy: protein dynamics inferred from theory and experiments, Bioinformatics, 27, 1575, 10.1093/bioinformatics/btr168 Burke, 2012, Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110 (PIK3CA), Proc. Natl. Acad. Sci. U S A, 109, 15259, 10.1073/pnas.1205508109 Campitelli, 2018, Hinge-shift mechanism modulates allosteric regulations in human Pin1, J. Phys. Chem. B, 122, 5623, 10.1021/acs.jpcb.7b11971 Capdevila, 2017, Entropy redistribution controls allostery in a metalloregulatory protein, Proc. Natl. Acad. Sci. U S A, 114, 4424, 10.1073/pnas.1620665114 Carpenter, 1993, Phosphoinositide 3-kinase is activated by phosphopeptides that bind to the SH2 domains of the 85-kDa subunit, J. Biol. Chem., 268, 9478, 10.1016/S0021-9258(18)98375-4 Carson, 2008, Effects of oncogenic p110α subunit mutations on the lipid kinase activity of phosphoinositide 3-kinase, Biochem. J., 409, 519, 10.1042/BJ20070681 Cooper, 1984, Allostery without conformational change: a plausible model, Eur. Biophys. J., 11, 103, 10.1007/BF00276625 Delano, 2002 Dhand, 1994, PI 3-kinase: structural and functional analysis of intersubunit interactions, EMBO J., 13, 511, 10.1002/j.1460-2075.1994.tb06289.x Eargle Echeverria, 2015, Oncogenic mutations weaken the interactions that stabilize the p110α-p85α heterodimer in phosphatidylinositol 3-kinase α, FEBS J., 282, 3528, 10.1111/febs.13365 Engelman, 2006, The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism, Nat. Rev. Genet., 7, 606, 10.1038/nrg1879 Floyd, 1962, Algorithm 97: shortest path, Commun. ACM, 5, 345, 10.1145/367766.368168 Fuentes, 2004, Ligand-dependent dynamics and intramolecular signaling in a PDZ domain, J. Mol. Biol., 335, 1105, 10.1016/j.jmb.2003.11.010 Grant, 2006, Bio3d: an R package for the comparative analysis of protein structures, Bioinformatics, 22, 2695, 10.1093/bioinformatics/btl461 Hess, 1997, LINCS: a linear constraint solver for molecular simulations, J. Comput. Chem., 18, 1463, 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H Hon, 2012, Regulation of lipid binding underlies the activation mechanism of class IA PI3-kinases, Oncogene, 31, 3655, 10.1038/onc.2011.532 Huang, 2007, The structure of a human p110alpha/p85alpha complex elucidates the effects of oncogenic PI3Kalpha mutations, Science, 318, 1744, 10.1126/science.1150799 Huang, 2008, Insights into the oncogenic effects of PIK3CA mutations from the structure of p110α/p85α, Cell Cycle, 7, 1151, 10.4161/cc.7.9.5817 Huang, 2017, CHARMM36m: an improved force field for folded and intrinsically disordered proteins, Nat. Methods, 14, 71, 10.1038/nmeth.4067 Humphrey, 1996, VMD: Visual molecular dynamics, J. Mol. Graph., 14, 33, 10.1016/0263-7855(96)00018-5 Hunter, 2007, Matplotlib: a 2D graphics environment, Comput. Sci. Eng., 9, 90, 10.1109/MCSE.2007.55 Leontiadou, 2018, Insights into the mechanism of the PIK3CA E545K activating mutation using MD simulations, Sci. Rep., 8, 15544, 10.1038/s41598-018-27044-6 Maheshwari, 2017, Kinetic and structural analyses reveal residues in phosphoinositide 3-kinase α that are critical for catalysis and substrate recognition, J. Biol. Chem., 292, 13541, 10.1074/jbc.M116.772426 Malay, 2011, Crystal structure of unliganded TRAP: implications for dynamic allostery, Biochem. J., 434, 427, 10.1042/BJ20101813 Mandelker, 2009, A frequent kinase domain mutation that changes the interaction between PI3K and the membrane, Proc. Natl. Acad. Sci. U S A, 106, 16996, 10.1073/pnas.0908444106 McGibbon, 2015, MDTraj: a modern open library for the analysis of molecular dynamics trajectories, Biophys. J., 109, 1528, 10.1016/j.bpj.2015.08.015 Miled, 2007, Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit, Science, 317, 239, 10.1126/science.1135394 Miller, 2014, Structural basis of nSH2 regulation and lipid binding in PI3Kα, Oncotarget, 5, 5198, 10.18632/oncotarget.2263 Nguyen, 2018, NGLview—interactive molecular graphics for Jupyter notebooks, Bioinformatics, 34, 1241, 10.1093/bioinformatics/btx789 Nolte, 1996, Crystal structure of the PI 3-kinase p85 amino-terminal SH2 domain and its phosphopeptide complexes, Nat. Struct. Biol., 3, 364, 10.1038/nsb0496-364 O'Boyle, 2011, Open Babel: an open chemical toolbox, J. Cheminform., 3, 33, 10.1186/1758-2946-3-33 Philp, 2001, The phosphatidylinositol 3′-kinase p85α gene is an oncogene in human ovarian and colon tumors, Cancer Res., 61, 7426 Pirola, 2001, Activation loop sequences confer substrate specificity to phosphoinositide 3-kinase α (PI3Kα): functions of lipid kinase-deficient PI3Kα in signaling, J. Biol. Chem., 276, 21544, 10.1074/jbc.M011330200 Popovych, 2006, Dynamically driven protein allostery, Nat. Struct. Mol. Biol., 13, 831, 10.1038/nsmb1132 2018 Šali, 1993, Comparative protein modelling by satisfaction of spatial restraints, J. Mol. Biol., 234, 779, 10.1006/jmbi.1993.1626 Sarkar, 2008 Schüttelkopf, 2004, PRODRG: a tool for high-throughput crystallography of protein-ligand complexes, Acta Crystallogr. D Biol. Crystallogr., 60, 1355, 10.1107/S0907444904011679 Tsai, 2008, Allostery: absence of a change in shape does not imply that allostery is not at play, J. Mol. Biol., 378, 1, 10.1016/j.jmb.2008.02.034 Tse, 2015, Molecular dynamics simulations and structural network analysis of c-Abl and c-Src kinase core proteins: capturing allosteric mechanisms and communication pathways from residue centrality, J. Chem. Inf. Model., 55, 1645, 10.1021/acs.jcim.5b00240 Vadas, 2011, Structural basis for activation and inhibition of class I phosphoinositide 3-kinases, Sci. Signal., 4, re2, 10.1126/scisignal.2002165 Vanommeslaeghe, 2009, CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields, J. Comput. Chem., 31, 671 Vogt, 2007, Cancer-specific mutations in phosphatidylinositol 3-kinase, Trends Biochem. Sci., 32, 342, 10.1016/j.tibs.2007.05.005 Walker, 1999, Structural insights into phosphoinositide 3-kinase catalysis and signalling, Nature, 402, 313, 10.1038/46319 Walker, 2000, Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine, Mol. Cell, 6, 909, 10.1016/S1097-2765(05)00089-4 Weinkam, 2012, Structure-based model of allostery predicts coupling between distant sites, Proc. Natl. Acad. Sci. U S A, 109, 4875, 10.1073/pnas.1116274109 Wu, 2009, Regulation of Class IA PI 3-kinases: C2 domain-iSH2 domain contacts inhibit p85/p110 and are disrupted in oncogenic p85 mutants, Proc. Natl. Acad. Sci. U S A, 106, 20258, 10.1073/pnas.0902369106 Yu, 1998, Regulation of the p85/p110 phosphatidylinositol 3′-kinase: stabilization and inhibition of the p110α catalytic subunit by the p85 regulatory subunit, Mol. Cell. Biol., 18, 1379, 10.1128/MCB.18.3.1379 Yu, 1998, Regulation of the p85/p110α phosphatidylinositol 3′-kinase: distinct roles for the N-terminal and C-terminal SH2 domains, J. Biol. Chem., 273, 30199, 10.1074/jbc.273.46.30199 Zhang, 2019, The mechanism of PI3Kα activation at the atomic level, Chem. Sci., 10, 3671, 10.1039/C8SC04498H