Allophanes, a significant soil pool of silicon for plants

Geoderma - Tập 412 - Trang 115722 - 2022
Sophie Cornu1, Jean-Dominique Meunier1, Céline Ratie2, Fréderic Ouedraogo1, Yves Lucas3, Patricia Merdy3, Doris Barboni1, Camille Delvigne1, Daniel Borschneck1, Olivier Grauby4, Catherine Keller1
1Aix-Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, 13545 Aix en Provence Cedex 4, France
2INRAE, InfoSol, 45075 Orléans, France
3Université de Toulon, Aix-Marseille Univ, CNRS, IM2NP, 83041 Toulon Cedex 9, France
4Aix-Marseille Univ, CNRS – UMR 7325 CINaM, campus de Luminy, Case 913 13288 Marseille Cedex 9, France

Tài liệu tham khảo

Alexander, 1980, Bulk Densities of California Soils in Relation to Other Soil Properties, Soil Sci. Soc. Am. J., 44, 689, 10.2136/sssaj1980.03615995004400040005x Alexandre, 1997, Plant impact on the biogeochemical cycle of silicon and related weathering processes, Geochim. et Cosmochim. Acta, 61, 677, 10.1016/S0016-7037(97)00001-X Baize, 2000 Balesdent, 1991, Effet des ultrasons sur la distribution granulométrique des matières organiques des sols, Science du sol, 29, 95 Bartoli, F., 1983. The biogeochemical cycle of silicon in two temperate forest ecosystems. In: R. Hallberg (ed.) “Environmental Biogeochemistry”, Ecol. Bull., Stockholm, 35, 469-476. Bremond, 2004, Advantages and disadvantages of phytolith analysis for the reconstruction of Mediterranean vegetation: an assessment based on modern phytolith, pollen and botanical data (Luberon, France), Rev. Palaeobot. Palynol., 129, 213, 10.1016/j.revpalbo.2004.02.002 Carey, 2016, Human appropriation of biogenic silicon-the increasing role of agriculture, Funct. Ecol., 30, 1331, 10.1111/1365-2435.12544 Cassini Caner, 2010, Shorttime clay-mineral evolution in a soil chronosequence in Oléron Island (France), J. Plant Nutr. Soil Sci., 173, 591, 10.1002/jpln.200800351 Caubet, 2020, Agriculture increases the bioavailability of silicon, a beneficial element for crop, in temperate soils, Sci. Rep., 10, 19999, 10.1038/s41598-020-77059-1 Conley, 2008, Deforestation causes increased dissolved silicate losses in Hubbard Brook Experimental Forest, Glob. Change Biol., 14, 1, 10.1111/j.1365-2486.2008.01667.x Cornu, 2012, Evidence of short-term clay evolution in soils under human impact, C. R. Geosci., 344, 747, 10.1016/j.crte.2012.09.005 Cornu, 2018, Soluble and colloidal translocation of Al, Fe, Si and Mn in an artificially drained French Retisol, Geoderma, 330, 193, 10.1016/j.geoderma.2018.05.032 Clymans, W., Struyf, E., Govers, G., Vandevenne, F., Conley D.J., 2011. Anthropogenic impact on amorphous silica pools in temperate soils. Biogeosciences, 8, 2281–2293, 2011.25. Desplanques, 2006, Silicon transfers in a rice field in Camargue (France), J. Geochem. Explor., 88, 190, 10.1016/j.gexplo.2005.08.036 de Tombeur, 2020, Plants sustain the terrestrial silicon cycle during ecosystem retrogression, Science, 369, 1245, 10.1126/science.abc0393 Fekiacova, 2017, Can Fe isotope fractionations trace the pedogenetic mechanisms involved in podzolization?, Geoderma, 296, 38, 10.1016/j.geoderma.2017.02.020 Filippi P., Minasny B., Cattle S.R., Bishop T.F.A., 2016. Chapter Four - Monitoring and Modeling Soil Change: The Influence of Human Activity and Climatic Shifts on Aspects of Soil Spatiotemporally. In Advances in Agronomy, eds Sparks D.L., 139, 153-214, 10.1016/bs.agron.2016.06.001. Fraysse, 2009, Surface chemistry and reactivity of plant phytoliths in aqueous solutions, Chem. Geol., 258, 197, 10.1016/j.chemgeo.2008.10.003 Georgiadis, 2013, Development of a method for sequential Si extraction from soils, Geoderma, 209-210, 251, 10.1016/j.geoderma.2013.06.023 Guntzer, 2012, Long-term removal of wheat straw decreases soil amorphous silica at Broadbalk, Rothamsted, Plant Soil, 352, 173, 10.1007/s11104-011-0987-4 Harsh, 2005, 64 Haysom, 1975, Some aspects of the calcium silicate trials at Mackay, Proc. Qld. Soc. Sugar Cane Technol., 42, 117 Henmi, 1976, Morphology and composition of allophane, Am. Mineral., 61, 379 Hodson, M. J., White, P. J., Mead, A., Broadley, M. R., 2005. Phylogenetic variation in the silicon composition of plants. Annals of Botany 96, 1027–1046. International Committee for Phytolith Taxonomy (ICPT), Neumann, K., Strömberg, C.A.E., Ball, T., Albert, R.M., Vrydaghs, L., Cummings, L.S., 2019. International Code for Phytolith Nomenclature (ICPN) 2.0. Annals of Botany. 10.1093/aob/mcz064. Jolivet, C., Boulonne, L., Ratié, C., 2006. Manuel du Réseau de Mesures de la Qualité des Sols. Jouquet, 2020, The distribution of silicon in soils influenced by termite bioturbation in South Indian forest soils, Geoderma, 10.1016/j.geoderma.2020.114362 Katz, 2015, Silica phytoliths in angiosperms: Phylogeny and early evolutionary history, New Phytol., 208, 642, 10.1111/nph.13559 Keller, C., Rizwan, M., Meunier, J.D., 2021. Are clay minerals a significant source of Si for crops? A comparison of amorphous silica and the roles of the minerals type and pH. Silicon. 10.1007/s12633-020-00877-5. Kitagawa, 1971, The “unit particle” of allophane, Am. Mineral., 56, 465 Klotzbücher, 2018, Impact of agriculture practices on plant-available silicon, Geoderma, 331, 15, 10.1016/j.geoderma.2018.06.011 Kodama, 1991, Tiron dissolution method used to remove and characterize inorganic components in soils, Soil Sci. Soc. Am. J., 55, 1180, 10.2136/sssaj1991.03615995005500040047x Landré, 2020, Do climate and land use affect the pool of total silicon concentration? A digital soil mapping approach of French topsoils, Geoderma, 364, 114175, 10.1016/j.geoderma.2020.114175 Li, 2020, Neoformed aluminosilicates and phytogenic silica are competitive sinks in the silicon soil-plant cycle, Geoderma, 114308, 10.1016/j.geoderma.2020.114308 Li, 2020, Soil microaggregates store phytoliths in a sandy loam, Geoderma, 360, 114037, 10.1016/j.geoderma.2019.114037 Liang, Y., Nikolic, M., Bélanger, R., Gong, H., Song, A., 2015. Silicon in Agriculture. (Springer Netherlands). 10.1007/978-94-017-9978-2. Mehra, 1960, Iron Oxide Removal from Soils and Clays by a Dithionite-Citrate System Buffered with Sodium Bicarbonate, Clays Clay Miner., 7, 317, 10.1346/CCMN.1958.0070122 Meunier, 2018, pH as a proxy for estimating plant-available Si? A case study in rice fields in Karnataka (South India), Plant Soil, 432, 143, 10.1007/s11104-018-3758-7 Miles, 2014, Extractable Silicon in Soils of the South African Sugar Industry and Relationships with Crop Uptake, Commun. Soil Sci. Plant Anal., 45, 2949, 10.1080/00103624.2014.956881 Montagne, 2016, Changes in the pathway and the intensity of albic material genesis: Role of agricultural practices, Geoderma, 268, 156, 10.1016/j.geoderma.2016.01.019 Montagne, 2008, Impact of drainage on soil-forming mechanisms in a French Albeluvisol: input of mineralogical data in mass-balance modelling, Geoderma, 145, 426, 10.1016/j.geoderma.2008.02.005 Narayanaswamy, 2010, Evaluation of selected extractants for plant- -Available Silicon in Rice Soils of Southern India, Commun. Soil Sci. Plant Anal., 41, 977, 10.1080/00103621003646063 Parfitt, 1990, Allophane in new Zeland - a review, Aust. J. Soil Res., 28, 343, 10.1071/SR9900343 Puppe, 2015, The protozoic Si pool in temperate forest ecosystems-quantification, abiotic controls and interactions with earthworms, Geoderma, 243-244, 196, 10.1016/j.geoderma.2014.12.018 Puppe, 2021, Crop straw recycling prevents anthropogenic desilication of agricultural soil-plant systems in the temperate zone-Results from a long-term field experiment in NE Germany, Geoderma, 403, 115187, 10.1016/j.geoderma.2021.115187 Ralston, 2021, Dissolution rates of allophane with variable Fe contents: implications for aqueous alteration and the preservation of X-Ray amorphous materials on Mars, Clays Clay Miner., 69, 263, 10.1007/s42860-021-00124-x Robert, 1974, Méthode de préparation des argiles des sols pour des études minéralogiques, Ann. Agron., 25, 859 Saccone, 2007, Assessing the extraction and quantification of amorphous silica in soils of forest and grassland ecosystems, Eur. J. Soil Sci., 58, 1446, 10.1111/j.1365-2389.2007.00949.x Sauer, 2008, Podzol development with time in sandy beach deposits in southern Norway, J. Plant Nutr., 171, 483, 10.1002/jpln.200700023 Schaller, 2021, Silicon Cycling in Soils Revisited, Plants, 10, 295, 10.3390/plants10020295 Sommer, 2006, Silicon pools and fluxes in soils and landscapes—a review, J. Plant Nutr. Soil Sci., 169, 310, 10.1002/jpln.200521981 Struyf, 2010, Historical land use change has lowered terrestrial silica mobilization, Nat. Commun., 1, 10.1038/ncomms1128 Stützer, 1998, Early stages of podzolisation in young aeolian sediments, western Jutland, Catena, 32, 115, 10.1016/S0341-8162(98)00039-3 Tamm, 1922, Eine Method zur Bestimmung der anorganishen Komponenten des Golkomplex in Boden, Medd. Statens skogforsoksanst., 19, 385 Vandevenne, 2015, Silicon pools in human impacted soils of temperate zones, Global Biogeochem. Cycles, 29, 1439, 10.1002/2014GB005049 WRB, 2006. World reference base for soil resources. World Soil Resources Reports, 103. FAO, Rome. Wada, K., 1989. Allophane and imogolite, in: Minerals in Soil Environments, Dixon, J. B., Weed, S. B., & Wada, K. eds. Soil Science Society of America, Madison, USA, 1051–1087. 10.2136/sssabookser1.2ed.c21. Wilding, 1974, Contributions of Forest Opal and Associated Crystalline Phases to Fine Silt and Clay Fractions of Soils, Clays Clay Miner., 22, 295, 10.1346/CCMN.1974.0220311 Wojdyr, 2010, Fityk: a general-purpose peak fitting program, J. Appl. Cryst., 43, 1126, 10.1107/S0021889810030499 Yanai, 2016, Evaluation of available silicon content and its determining factors of agricultural soils in Japan, Soil Sci. Plant Nutr., 62, 511, 10.1080/00380768.2016.1232601