Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phân bổ tài nguyên trong bộ nhớ làm việc: Những hệ quả lý thuyết và thực nghiệm cho quá trình tìm kiếm thị giác
Tóm tắt
Gần đây, bộ nhớ làm việc (WM) đã được khái niệm hóa như một nguồn tài nguyên hạn chế, được phân phối một cách linh hoạt và chiến lược giữa một số lượng biểu diễn không giới hạn. Ngoài việc cải thiện độ chính xác của các biểu diễn trong WM, việc phân bổ tài nguyên cũng có thể hình thành cách mà những biểu diễn này hoạt động như các mẫu hướng sự chú ý để hướng dẫn tìm kiếm thị giác. Trong bài viết này, chúng tôi đã xem xét các bằng chứng gần đây ủng hộ giả định này và đề xuất ba nguyên tắc chính điều khiển mối quan hệ giữa tài nguyên WM và tìm kiếm thị giác hướng mẫu. Thứ nhất, việc phân bổ tài nguyên cho một mẫu chú ý có ảnh hưởng đến tìm kiếm thị giác, vì nó có thể cải thiện sự hướng dẫn của sự chú ý thị giác, tạo điều kiện cho việc nhận diện mục tiêu và/hoặc bảo vệ mẫu chú ý chống lại sự can thiệp. Thứ hai, việc phân bổ lượng tài nguyên lớn nhất cho một biểu diễn trong WM là không đủ để đưa biểu diễn này đạt trạng thái mẫu chú ý và do đó, có khả năng hướng dẫn tìm kiếm thị giác. Thứ ba, biểu diễn đạt được trạng thái mẫu chú ý, dù trong quá trình mã hóa hay trong khi duy trì, nhận được một lượng tài nguyên WM tỷ lệ với mối liên quan của nó đối với tìm kiếm thị giác. Như vậy, giả thuyết tài nguyên về tìm kiếm thị giác cấu thành một khuôn khổ tiết kiệm và mạnh mẽ, cung cấp những góc nhìn mới về các tranh cãi trước đây và bổ sung cho các mô hình hiện có về tìm kiếm thị giác hướng mẫu.
Từ khóa
#bộ nhớ làm việc #tài nguyên #mẫu chú ý #tìm kiếm thị giác #hướng dẫn sự chú ýTài liệu tham khảo
Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15(2), 106-111. https://doi.org/10.1111/j.0963-7214.2004.01502006.x
Ansorge, U., Horstmann, G., & Carbone, E. (2005). Top-down contingent capture by color: Evidence from RT distribution analyses in a manual choice reaction task. Acta Psychologica, 120(3), 243-266. https://doi.org/10.1016/j.actpsy.2005.04.004
Awh, E., & Vogel, E. K. (2008). The bouncer in the brain. Nature Neuroscience, 11(1), 5-6. https://doi.org/10.1038/nn0108-5
Awh, E., Vogel, E. K., & Oh, S. H. (2006). Interactions between attention and working memory. Neuroscience, 139(1), 201-208. https://doi.org/10.1016/j.neuroscience.2005.08.023
Bacon, W. F., & Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. Perception & Psychophysics, 55(5), 485-496. https://doi.org/10.3758/BF03205306
Baddeley, A. (2010). Working memory. Current Biology, 20(4), R136-R140. https://doi.org/10.1016/j.cub.2009.12.014
Baddeley, A., & Hitch, G. (1974). Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 8, pp. 47-89). Elsevier Academic Press. https://doi.org/10.1016/S0079-7421(08)60452-1
Bahle, B., Beck, V. M., & Hollingworth, A. (2018). The architecture of interaction between visual working memory and visual attention. Journal of Experimental Psychology: Human Perception and Performance, 44(7), 992-1011. https://doi.org/10.1037/xhp0000509
Bahle, B., Thayer, D. D., Mordkoff, J. T., & Hollingworth, A. (2020). The architecture of working memory: Features from multiple remembered objects produce parallel, coactive guidance of attention in visual search. Journal of Experimental Psychology: General, 149(5), 967-983. https://doi.org/10.1037/xge0000694
Barrett, D. J. K., & Zobay, O. (2014). Attentional control via parallel target-templates in dual-target search. PLoS One, 9(1), e86848. https://doi.org/10.1371/journal.pone.0086848
Barrouillet, P., Bernardin, S., & Camos, V. (2004). Time constraints and resource sharing in adults' working memory spans. Journal of Experimental Psychology: General, 133(1), 83-100. https://doi.org/10.1037/0096-3445.133.1.83
Barrouillet, P., & Camos, V. (2007). The time-based resource-sharing model of working memory. In N. Osaka (Ed.), The Cognitive Neuroscience of Working Memory (pp. 59-80). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198570394.003.0004
Bays, P. M., Catalao, R. F. G., & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. Journal of Vision, 9(10), 7. https://doi.org/10.1167/9.10.7
Bays, P. M., Gorgoraptis, N., Wee, N., Marshall, L., & Husain, M. (2011). Temporal dynamics of encoding, storage, and reallocation of visual working memory. Journal of Vision, 11(10), 6. https://doi.org/10.1167/11.10.6
Bays, P. M., & Husain, M. (2008). Dynamic shifts of limited working memory resources in human vision. Science, 321(5890), 851-854. https://doi.org/10.1126/science.1158023
Beck, V. M., & Hollingworth, A. (2017). Competition in saccade target selection reveals attentional guidance by simultaneously active working memory representations. Journal of Experimental Psychology: Human Perception and Performance, 43(2), 225-230. https://doi.org/10.1037/xhp0000306
Beck, V. M., Hollingworth, A., & Luck, S. J. (2012). Simultaneous control of attention by multiple working memory representations. Psychological Science, 23(8), 887-898. https://doi.org/10.1177/0956797612439068
Berggren, N., Nako, R., & Eimer, M. (2020). Out with the old: New target templates impair the guidance of visual search by preexisting task goals. Journal of Experimental Psychology: General, 149(6), 1156-1168. https://doi.org/10.1037/xge0000697
Biderman, D., Biderman, N., Zivony, A., & Lamy, D. (2017). Contingent capture is weakened in search for multiple features from different dimensions. Journal of Experimental Psychology: Human Perception and Performance, 43(12), 1974-1992. https://doi.org/10.1037/xhp0000422
Bravo, M. J., & Farid, H. (2009). The specificity of the search template. Journal of Vision, 9(1), 34. https://doi.org/10.1167/9.1.34
Bravo, M. J., & Farid, H. (2014). Informative cues can slow search: The cost of matching a specific template. Attention, Perception, & Psychophysics, 76(1), 32-39. https://doi.org/10.3758/s13414-013-0532-z
Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97(4), 523-547. https://doi.org/10.1037/0033-295X.97.4.523
Bundesen, C., Habekost, T., & Kyllingsbæk, S. (2005). A neural theory of visual attention: Bridging cognition and neurophysiology. Psychological Review, 112(2), 291-328. https://doi.org/10.1037/0033-295X.112.2.291
Cantor, J., & Engle, R. W. (1993). Working-memory capacity as long-term memory activation: An individual-differences approach. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19(5), 1101-1114. https://doi.org/10.1037/0278-7393.19.5.1101
Carlisle, N. B., Arita, J. T., Pardo, D., & Woodman, G. F. (2011). Attentional templates in visual working memory. The Journal of Neuroscience, 31(25), 9315-9322. https://doi.org/10.1523/JNEUROSCI.1097-11.2011
Carlisle, N. B., & Woodman, G. F. (2011). When memory is not enough: Electrophysiological evidence for goal-dependent use of working memory representations in guiding visual attention. Journal of Cognitive Neuroscience, 23(10), 2650-2664. https://doi.org/10.1162/jocn.2011.21602
Carlisle, N. B., & Woodman, G. F. (2019). Quantifying the attentional impact of working memory matching targets and distractors. Visual Cognition, 27(5-8), 452-466. https://doi.org/10.1080/13506285.2019.1634172
Castelhano, M. S., Pollatsek, A., & Cave, K. R. (2008). Typicality aids search for an unspecified target, but only in identification and not in attentional guidance. Psychonomic Bulletin & Review, 15(4), 795-801. https://doi.org/10.3758/PBR.15.4.795
Chen, Y., & Du, F. (2017). Two visual working memory representations simultaneously control attention. Scientific Reports, 7(1), 6107. https://doi.org/10.1038/s41598-017-05865-1
Christie, G. J., Livingstone, A. C., & McDonald, J. J. (2014). Searching for inefficiency in visual search. Journal of Cognitive Neuroscience, 27(1), 46-56. https://doi.org/10.1162/jocn_a_00716
Christophel, T. B., Klink, P. C., Spitzer, B., Roelfsema, P. R., & Haynes, J.-D. (2017). The distributed nature of working memory. Trends in Cognitive Sciences, 21(2), 111-124. https://doi.org/10.1016/j.tics.2016.12.007
Chun, M. M. (2011). Visual working memory as visual attention sustained internally over time. Neuropsychologia, 49(6), 1407-1409. https://doi.org/10.1016/j.neuropsychologia.2011.01.029
Cowan, N. (1999). An embedded-processes model of working memory. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 62-101). Cambridge University Press. https://doi.org/10.1017/CBO9781139174909.006
Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87-114. https://doi.org/10.1017/S0140525X01003922
Cowan, N. (2005). Working memory capacity. Psychology Press. https://doi.org/10.4324/9780203342398
Cowan, N. (2017). The many faces of working memory and short-term storage. Psychonomic Bulletin & Review, 24(4), 1158-1170. https://doi.org/10.3758/s13423-016-1191-6
Cowan, N., Donnell, K., & Saults, J. S. (2013). A list-length constraint on incidental item-to-item associations. Psychonomic Bulletin & Review, 20(6), 1253-1258. https://doi.org/10.3758/s13423-013-0447-7
Cowan, N., & Morey, C. C. (2006). Visual working memory depends on attentional filtering. Trends in Cognitive Sciences, 10(4), 139-141. https://doi.org/10.1016/j.tics.2006.02.001
Cunningham, C. A., & Wolfe, J. M. (2014). The role of object categories in hybrid visual and memory search. Journal of Experimental Psychology: General, 143(4), 1585-1599. https://doi.org/10.1037/a0036313
Cusack, R., Lehmann, M., Veldsman, M., & Mitchell, D. J. (2009). Encoding strategy and not visual working memory capacity correlates with intelligence. Psychonomic Bulletin & Review, 16(4), 641-647. https://doi.org/10.3758/PBR.16.4.641
D'Esposito, M., & Postle, B. R. (2015). The cognitive neuroscience of working memory. Annual Review of Psychology, 66(1), 115-142. https://doi.org/10.1146/annurev-psych-010814-015031
de Vries, I. E. J., Slagter, H. A., & Olivers, C. N. L. (2020). Oscillatory Control over Representational States in Working Memory. Trends in Cognitive Sciences, 24(2), 150-162. https://doi.org/10.1016/j.tics.2019.11.006
de Vries, I. E. J., van Driel, J., Karacaoglu, M., & Olivers, C. N. L. (2018). Priority Switches in Visual Working Memory are Supported by Frontal Delta and Posterior Alpha Interactions. Cerebral Cortex, 28(11), 4090-4104. https://doi.org/10.1093/cercor/bhy223
de Vries, I. E. J., van Driel, J., & Olivers, C. N. L. (2017). Posterior α EEG dynamics dissociate current from future goals in working memory-guided visual search. The Journal of Neuroscience, 37(6), 1591-1603. https://doi.org/10.1523/JNEUROSCI.2945-16.2016
de Vries, I. E. J., van Driel, J., & Olivers, C. N. L. (2019). Decoding the status of working memory representations in preparation of visual selection. NeuroImage, 191, 549-559. https://doi.org/10.1016/j.neuroimage.2019.02.069
Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18(1), 193-222. https://doi.org/10.1146/annurev.ne.18.030195.001205
Dombrowe, I., Donk, M., & Olivers, C. N. L. (2011). The costs of switching attentional sets. Attention, Perception, & Psychophysics, 73(8), 2481-2488. https://doi.org/10.3758/s13414-011-0198-3
Downing, P. E., & Dodds, C. (2004). Competition in visual working memory for control of search. Visual Cognition, 11(6), 689-703. https://doi.org/10.1080/13506280344000446
Dube, B., & Al-Aidroos, N. (2019). Distinct prioritization of visual working memory representations for search and for recall. Attention, Perception, & Psychophysics, 81(5), 1253-1261. https://doi.org/10.3758/s13414-018-01664-6
Dube, B., Emrich, S. M., & Al-Aidroos, N. (2017). More than a filter: Feature-based attention regulates the distribution of visual working memory resources. Journal of Experimental Psychology: Human Perception and Performance, 43(10), 1843-1854. https://doi.org/10.1037/xhp0000428
Dube, B., Lockhart, H. A., Rak, S., Emrich, S., & Al-Aidroos, N. (2019a). Limits to the flexible re-distribution of visual working memory resources after encoding. PsyArXiv. https://doi.org/10.31234/osf.io/kmqtr
Dube, B., Lumsden, A., & Al-Aidroos, N. (2019b). Probabilistic retro-cues do not determine state in visual working memory. Psychonomic Bulletin & Review, 26(2), 641-646. https://doi.org/10.3758/s13423-018-1533-7
Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433-458. https://doi.org/10.1037/0033-295X.96.3.433
Eimer, M. (1996). The N2pc component as an indicator of attentional selectivity. Electroencephalography and Clinical Neurophysiology, 99(3), 225-234. https://doi.org/10.1016/0013-4694(96)95711-9
Eimer, M. (2014). The neural basis of attentional control in visual search. Trends in Cognitive Sciences, 18(10), 526-535. https://doi.org/10.1016/j.tics.2014.05.005
Eimer, M., & Kiss, M. (2008). Involuntary attentional capture is determined by task set: Evidence from event-related brain potentials. Journal of Cognitive Neuroscience, 20(8), 1423-1433. https://doi.org/10.1162/jocn.2008.20099
Emrich, S. M., Lockhart, H. A., & Al-Aidroos, N. (2017). Attention mediates the flexible allocation of visual working memory resources. Journal of Experimental Psychology: Human Perception and Performance, 43(7), 1454-1465. https://doi.org/10.1037/xhp0000398
Engle, R. W. (2002). Working memory capacity as executive attention. Current Directions in Psychological Science, 11(1), 19-23. https://doi.org/10.1111/1467-8721.00160
Engle, R. W. (2018). Working memory and executive attention: A revisit. Perspectives on Psychological Science, 13(2), 190-193. https://doi.org/10.1177/1745691617720478
Fan, L., Sun, M., Xu, M., Li, Z., Diao, L., & Zhang, X. (2019). Multiple representations in visual working memory simultaneously guide attention: The type of memory-matching representation matters. Acta Psychologica, 192, 126-137. https://doi.org/10.1016/j.actpsy.2018.11.005
Foerster, R. M., & Schneider, W. X. (2018). Involuntary top-down control by search-irrelevant features: Visual working memory biases attention in an object-based manner. Cognition, 172, 37-45. https://doi.org/10.1016/j.cognition.2017.12.002
Folk, C. L., & Remington, R. (1998). Selectivity in distraction by irrelevant featural singletons: Evidence for two forms of attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 847-858. https://doi.org/10.1037/0096-1523.24.3.847
Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 1030-1044. https://doi.org/10.1037/0096-1523.18.4.1030
Fougnie, D., Suchow, J. W., & Alvarez, G. A. (2012). Variability in the quality of visual working memory. Nature Communications, 3(1), 1229. https://doi.org/10.1038/ncomms2237
Franconeri, S. L., Alvarez, G. A., & Cavanagh, P. (2013). Flexible cognitive resources: Competitive content maps for attention and memory. Trends in Cognitive Sciences, 17(3), 134-141. https://doi.org/10.1016/j.tics.2013.01.010
Frătescu, M., Van Moorselaar, D., & Mathôt, S. (2019). Can you have multiple attentional templates? Large-scale replications of Van Moorselaar, Theeuwes, and Olivers (2014) and Hollingworth and Beck (2016). Attention, Perception, & Psychophysics, 81(8), 2700-2709. https://doi.org/10.3758/s13414-019-01791-8
Fukuda, K., & Woodman, G. F. (2017). Visual working memory buffers information retrieved from visual long-term memory. Proceedings of the National Academy of Sciences of the United States of America, 114(20), 5306-5311. https://doi.org/10.1073/pnas.1617874114
Gao, Z., Yu, S., Zhu, C., Shui, R., Weng, X., Li, P., & Shen, M. (2016). Object-based encoding in visual working memory: Evidence from memory-driven attentional capture. Scientific Reports, 6(1), 22822. https://doi.org/10.1038/srep22822
Gazzaley, A. (2011). Influence of early attentional modulation on working memory. Neuropsychologia, 49(6), 1410-1424. https://doi.org/10.1016/j.neuropsychologia.2010.12.022
Gazzaley, A., & Nobre, A. C. (2012). Top-down modulation: Bridging selective attention and working memory. Trends in Cognitive Sciences, 16(2), 129-135. https://doi.org/10.1016/j.tics.2011.11.014
Gilchrist, A. L., & Cowan, N. (2011). Can the focus of attention accommodate multiple, separate items? Journal of Experimental Psychology: Learning, Memory, and Cognition, 37(6), 1484-1502. https://doi.org/10.1037/a0024352
Gorgoraptis, N., Catalao, R. F. G., Bays, P. M., & Husain, M. (2011). Dynamic updating of working memory resources for visual objects. The Journal of Neuroscience, 31(23), 8502-8511. https://doi.org/10.1523/JNEUROSCI.0208-11.2011
Grubert, A., Carlisle, N. B., & Eimer, M. (2016). The control of single-color and multiple-color visual search by attentional templates in working memory and in long-term memory. Journal of Cognitive Neuroscience, 28(12), 1947-1963. https://doi.org/10.1162/jocn_a_01020
Grubert, A., & Eimer, M. (2015). Rapid parallel attentional target selection in single-color and multiple-color visual search. Journal of Experimental Psychology: Human Perception and Performance, 41(1), 86-101. https://doi.org/10.1037/xhp0000019
Grubert, A., & Eimer, M. (2016). All set, indeed! N2pc components reveal simultaneous attentional control settings for multiple target colors. Journal of Experimental Psychology: Human Perception and Performance, 42(8), 1215-1230. https://doi.org/10.1037/xhp0000221
Grubert, A., & Eimer, M. (2018). The time course of target template activation processes during preparation for visual search. The Journal of Neuroscience, 38(44), 9527-9538. https://doi.org/10.1523/JNEUROSCI.0409-18.2018
Grubert, A., & Eimer, M. (2020). Preparatory template activation during search for alternating targets. Journal of Cognitive Neuroscience, 32(8), 1525-1535. https://doi.org/10.1162/jocn_a_01565
Gunseli, E., Olivers, C. N. L., & Meeter, M. (2014). Effects of search difficulty on the selection, maintenance, and learning of attentional templates. Journal of Cognitive Neuroscience, 26(9), 2042-2054. https://doi.org/10.1162/jocn_a_00600
Gunseli, E., Olivers, C. N. L., & Meeter, M. (2016). Task-irrelevant memories rapidly gain attentional control with learning. Journal of Experimental Psychology: Human Perception and Performance, 42(3), 354-362. https://doi.org/10.1037/xhp0000134
Hamblin-Frohman, Z., & Becker, S. I. (2019). Attending object features interferes with visual working memory regardless of eye-movements. Journal of Experimental Psychology: Human Perception and Performance, 45(8), 1049-1061. https://doi.org/10.1037/xhp0000651
Hollingworth, A., & Beck, V. M. (2016). Memory-based attention capture when multiple items are maintained in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 42(7), 911-917. https://doi.org/10.1037/xhp0000230
Hollingworth, A., & Hwang, S. (2013). The relationship between visual working memory and attention: Retention of precise colour information in the absence of effects on perceptual selection. Philosophical Transactions of the Royal Society of London: Series B, Biological Sciences, 368(1628), 20130061. https://doi.org/10.1098/rstb.2013.0061
Hout, M. C., & Goldinger, S. D. (2015). Target templates: The precision of mental representations affects attentional guidance and decision-making in visual search. Attention, Perception, & Psychophysics, 77(1), 128-149. https://doi.org/10.3758/s13414-014-0764-6
Houtkamp, R., & Roelfsema, P. R. (2006). The effect of items in working memory on the deployment of attention and the eyes during visual search. Journal of Experimental Psychology: Human Perception and Performance, 32(2), 423-442. https://doi.org/10.1037/0096-1523.32.2.423
Houtkamp, R., & Roelfsema, P. R. (2009). Matching of visual input to only one item at any one time. Psychological Research, 73(3), 317-326. https://doi.org/10.1007/s00426-008-0157-3
Huang, L., & Pashler, H. (2007). Working memory and the guidance of visual attention: Consonance-driven orienting. Psychonomic Bulletin & Review, 14(1), 148-153. https://doi.org/10.3758/BF03194042
Huynh Cong, S., & Kerzel, D. (2020). New templates interfere with existing templates depending on their respective priority in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 46(11), 1313-1327. https://doi.org/10.1037/xhp0000859
Irons, J. L., Folk, C. L., & Remington, R. W. (2012). All set! Evidence of simultaneous attentional control settings for multiple target colors. Journal of Experimental Psychology: Human Perception and Performance, 38(3), 758-775. https://doi.org/10.1037/a0026578
Jenkins, M., Grubert, A., & Eimer, M. (2018). Category-based attentional guidance can operate in parallel for multiple target objects. Biological Psychology, 135, 211-219. https://doi.org/10.1016/j.biopsycho.2018.04.006
Jost, K., & Mayr, U. (2016). Switching between filter settings reduces the efficient utilization of visual working memory. Cognitive, Affective, & Behavioral Neuroscience, 16(2), 207-218. https://doi.org/10.3758/s13415-015-0380-5
Kane, M. J., Bleckley, M. K., Conway, A. R. A., & Engle, R. W. (2001). A controlled-attention view of working-memory capacity. Journal of Experimental Psychology: General, 130(2), 169-183. https://doi.org/10.1037/0096-3445.130.2.169
Kane, M. J., & Engle, R. W. (2000). Working-memory capacity, proactive interference, and divided attention: Limits on long-term memory retrieval. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(2), 336-358. https://doi.org/10.1037/0278-7393.26.2.336
Kerzel, D. (2019). The precision of attentional selection is far worse than the precision of the underlying memory representation. Cognition, 186, 20-31. https://doi.org/10.1016/j.cognition.2019.02.001
Kerzel, D., & Andres, M. K.-S. (2020). Object features reinstated from episodic memory guide attentional selection. Cognition, 197, 104158. https://doi.org/10.1016/j.cognition.2019.104158
Kerzel, D., & Witzel, C. (2019). The allocation of resources in visual working memory and multiple attentional templates. Journal of Experimental Psychology: Human Perception and Performance, 45(5), 645-658. https://doi.org/10.1037/xhp0000637
Keshvari, S., van den Berg, R., & Ma, W. J. (2013). No evidence for an item limit in change detection. PLoS Computational Biology, 9(2), e1002927. https://doi.org/10.1371/journal.pcbi.1002927
Kim, S., & Cho, Y. S. (2016). Memory-based attentional capture by colour and shape contents in visual working memory. Visual Cognition, 24(1), 51-62. https://doi.org/10.1080/13506285.2016.1184734
Kiyonaga, A., & Egner, T. (2013). Working memory as internal attention: Toward an integrative account of internal and external selection processes. Psychonomic Bulletin & Review, 20(2), 228-242. https://doi.org/10.3758/s13423-012-0359-y
Kristjánsson, T., & Kristjánsson, Á. (2018). Foraging through multiple target categories reveals the flexibility of visual working memory. Acta Psychologica, 183, 108-115. https://doi.org/10.1016/j.actpsy.2017.12.005
Kumar, S., Soto, D., & Humphreys, G. W. (2009). Electrophysiological evidence for attentional guidance by the contents of working memory. European Journal of Neuroscience, 30(2), 307-317. https://doi.org/10.1111/j.1460-9568.2009.06805.x
Kuo, B.-C., Yeh, Y.-Y., Chen, A. J. W., & D’Esposito, M. (2011). Functional connectivity during top-down modulation of visual short-term memory representations. Neuropsychologia, 49(6), 1589-1596. https://doi.org/10.1016/j.neuropsychologia.2010.12.043
Landman, R., Spekreijse, H., & Lamme, V. A. F. (2003). Large capacity storage of integrated objects before change blindness. Vision Research, 43(2), 149-164. https://doi.org/10.1016/S0042-6989(02)00402-9
Leblanc, É., Prime, D. J., & Jolicoeur, P. (2007). Tracking the location of visuospatial attention in a contingent capture paradigm. Journal of Cognitive Neuroscience, 20(4), 657-671. https://doi.org/10.1162/jocn.2008.20051
Lee, E.-Y., Cowan, N., Vogel, E. K., Rolan, T., Valle-Inclán, F., & Hackley, S. A. (2010). Visual working memory deficits in patients with Parkinson's disease are due to both reduced storage capacity and impaired ability to filter out irrelevant information. Brain, 133(9), 2677-2689. https://doi.org/10.1093/brain/awq197
Lepsien, J., Thornton, I., & Nobre, A. C. (2011). Modulation of working-memory maintenance by directed attention. Neuropsychologia, 49(6), 1569-1577. https://doi.org/10.1016/j.neuropsychologia.2011.03.011
Lien, M.-C., Ruthruff, E., Goodin, Z., & Remington, R. W. (2008). Contingent attentional capture by top-down control settings: Converging evidence from event-related potentials. Journal of Experimental Psychology: Human Perception and Performance, 34(3), 509-530. https://doi.org/10.1037/0096-1523.34.3.509
Liesefeld, A. M., Liesefeld, H. R., & Zimmer, H. D. (2013). Intercommunication between prefrontal and posterior brain regions for protecting visual working memory from distractor interference. Psychological Science, 25(2), 325-333. https://doi.org/10.1177/0956797613501170
Logan, G. D. (2002). An instance theory of attention and memory. Psychological Review, 109(2), 376-400. https://doi.org/10.1037/0033-295X.109.2.376
Luck, S. J., & Hillyard, S. A. (1994). Electrophysiological correlates of feature analysis during visual search. Psychophysiology, 31(3), 291-308. https://doi.org/10.1111/j.1469-8986.1994.tb02218.x
Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279-281. https://doi.org/10.1038/36846
Luck, S. J., & Vogel, E. K. (2013). Visual working memory capacity: From psychophysics and neurobiology to individual differences. Trends in Cognitive Sciences, 17(8), 391-400. https://doi.org/10.1016/j.tics.2013.06.006
Luria, R., Balaban, H., Awh, E., & Vogel, E. K. (2016). The contralateral delay activity as a neural measure of visual working memory. Neuroscience and Biobehavioral Reviews, 62, 100-108. https://doi.org/10.1016/j.neubiorev.2016.01.003
Luria, R., Sessa, P., Gotler, A., Jolicœur, P., & Dell'Acqua, R. (2009). Visual short-term memory capacity for simple and complex objects. Journal of Cognitive Neuroscience, 22(3), 496-512. https://doi.org/10.1162/jocn.2009.21214
Ma, W. J., Husain, M., & Bays, P. M. (2014). Changing concepts of working memory. Nature Neuroscience, 17(3), 347-356. https://doi.org/10.1038/nn.3655
Machizawa, M. G., Goh, C. C. W., & Driver, J. (2012). Human visual short-term memory precision can be varied at will when the number of retained items is low. Psychological Science, 23(6), 554-559. https://doi.org/10.1177/0956797611431988
Makovski, T., & Jiang, Y. V. (2007). Distributing versus focusing attention in visual short-term memory. Psychonomic Bulletin & Review, 14(6), 1072-1078. https://doi.org/10.3758/BF03193093
Malcolm, G. L., & Henderson, J. M. (2009). The effects of target template specificity on visual search in real-world scenes: Evidence from eye movements. Journal of Vision, 9(11), 8. https://doi.org/10.1167/9.11.8
Malcolm, G. L., & Henderson, J. M. (2010). Combining top-down processes to guide eye movements during real-world scene search. Journal of Vision, 10(2), 4. https://doi.org/10.1167/10.2.4
Matsukura, M., Luck, S. J., & Vecera, S. P. (2007). Attention effects during visual short-term memory maintenance: Protection or prioritization? Perception & Psychophysics, 69(8), 1422-1434. https://doi.org/10.3758/BF03192957
Maxcey-Richard, A. M., & Hollingworth, A. (2013). The strategic retention of task-relevant objects in visual working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(3), 760-772. https://doi.org/10.1037/a0029496
McElree, B. (2001). Working memory and focal attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27(3), 817-835. https://doi.org/10.1037/0278-7393.27.3.817
McElree, B. (2006). Accessing recent events. In B. H. Ross (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 46, pp. 155-200). Elsevier Academic Press. https://doi.org/10.1016/S0079-7421(06)46005-9
McNab, F., & Klingberg, T. (2008). Prefrontal cortex and basal ganglia control access to working memory. Nature Neuroscience, 11(1), 103-107. https://doi.org/10.1038/nn2024
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24(1), 167-202. https://doi.org/10.1146/annurev.neuro.24.1.167
Moore, K. S., & Weissman, D. H. (2010). Involuntary transfer of a top-down attentional set into the focus of attention: Evidence from a contingent attentional capture paradigm. Attention, Perception, & Psychophysics, 72(6), 1495-1509. https://doi.org/10.3758/APP.72.6.1495
Moran, J., & Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex. Science, 229(4715), 782-784. https://doi.org/10.1126/science.4023713
Motter, B. C. (1994). Neural correlates of attentive selection for color or luminance in extrastriate area V4. The Journal of Neuroscience, 14(4), 2178-2189. https://doi.org/10.1523/JNEUROSCI.14-04-02178.1994
Murray, A. M., Nobre, A. C., & Stokes, M. G. (2011). Markers of preparatory attention predict visual short-term memory performance. Neuropsychologia, 49(6), 1458-1465. https://doi.org/10.1016/j.neuropsychologia.2011.02.016
Myers, N. E., Stokes, M. G., & Nobre, A. C. (2017). Prioritizing information during working memory: Beyond sustained internal attention. Trends in Cognitive Sciences, 21(6), 449-461. https://doi.org/10.1016/j.tics.2017.03.010
Myers, N. E., Walther, L., Wallis, G., Stokes, M. G., & Nobre, A. C. (2015). Temporal dynamics of attention during encoding versus maintenance of working memory: Complementary views from event-related potentials and alpha-band oscillations. Journal of Cognitive Neuroscience, 27(3), 492-508. https://doi.org/10.1162/jocn_a_00727
Nairne, J. S., & Neath, I. (2001). Long-term memory span. Behavioral and Brain Sciences, 24(1), 134-135. https://doi.org/10.1017/S0140525X01433929
Nako, R., Wu, R., & Eimer, M. (2014a). Rapid guidance of visual search by object categories. Journal of Experimental Psychology: Human Perception and Performance, 40(1), 50-60. https://doi.org/10.1037/a0033228
Nako, R., Wu, R., Smith, T. J., & Eimer, M. (2014b). Item and category-based attentional control during search for real-world objects: Can you find the pants among the pans? Journal of Experimental Psychology: Human Perception and Performance, 40(4), 1283-1288. https://doi.org/10.1037/a0036885
Nobre, A., Griffin, I., & Rao, A. (2008). Spatial attention can bias search in visual short-term memory. Frontiers in Human Neuroscience, 2, 4. https://doi.org/10.3389/neuro.09.004.2007
Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(3), 411-421. https://doi.org/10.1037/0278-7393.28.3.411
Oberauer, K. (2009). Design for a working memory. In B. H. Ross (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 51, pp. 45-100). Elsevier Academic Press. https://doi.org/10.1016/S0079-7421(09)51002-X
Oberauer, K. (2019). Working Memory and Attention - A Conceptual Analysis and Review. Journal of Cognition, 2(1), 36. https://doi.org/10.5334/joc.58
Oberauer, K., & Bialkova, S. (2011). Serial and parallel processes in working memory after practice. Journal of Experimental Psychology: Human Perception and Performance, 37(2), 606-614. https://doi.org/10.1037/a0020986
Oberauer, K., & Hein, L. (2012). Attention to information in working memory. Current Directions in Psychological Science, 21(3), 164-169. https://doi.org/10.1177/0963721412444727
Oberauer, K., Lewandowsky, S., Farrell, S., Jarrold, C., & Greaves, M. (2012). Modeling working memory: An interference model of complex span. Psychonomic Bulletin & Review, 19(5), 779-819. https://doi.org/10.3758/s13423-012-0272-4
Oberauer, K., & Lin, H.-Y. (2017). An interference model of visual working memory. Psychological Review, 124(1), 21-59. https://doi.org/10.1037/rev0000044
Olivers, C. N. L. (2009). What drives memory-driven attentional capture? The effects of memory type, display type, and search type. Journal of Experimental Psychology: Human Perception and Performance, 35(5), 1275-1291. https://doi.org/10.1037/a0013896
Olivers, C. N. L., & Eimer, M. (2011). On the difference between working memory and attentional set. Neuropsychologia, 49(6), 1553-1558. https://doi.org/10.1016/j.neuropsychologia.2010.11.033
Olivers, C. N. L., Meijer, F., & Theeuwes, J. (2006). Feature-based memory-driven attentional capture: Visual working memory content affects visual attention. Journal of Experimental Psychology: Human Perception and Performance, 32(5), 1243-1265. https://doi.org/10.1037/0096-1523.32.5.1243
Olivers, C. N. L., Peters, J., Houtkamp, R., & Roelfsema, P. R. (2011). Different states in visual working memory: When it guides attention and when it does not. Trends in Cognitive Sciences, 15(7), 327-334. https://doi.org/10.1016/j.tics.2011.05.004
Ort, E., Fahrenfort, J. J., & Olivers, C. N. L. (2017). Lack of free choice reveals the cost of having to search for more than one object. Psychological Science, 28(8), 1137-1147. https://doi.org/10.1177/0956797617705667
Ort, E., Fahrenfort, J. J., & Olivers, C. N. L. (2018). Lack of free choice reveals the cost of multiple-target search within and across feature dimensions. Attention, Perception, & Psychophysics, 80(8), 1904-1917. https://doi.org/10.3758/s13414-018-1579-7
Ort, E., & Olivers, C. N. L. (2020). The capacity of multiple-target search. Visual Cognition, 28(5-8), 330-355. https://doi.org/10.1080/13506285.2020.1772430
Peters, J. C., Goebel, R., & Roelfsema, P. R. (2008). Remembered but unused: The accessory items in working memory that do not guide attention. Journal of Cognitive Neuroscience, 21(6), 1081-1091. https://doi.org/10.1162/jocn.2009.21083
Poch, C., Valdivia, M., Capilla, A., Hinojosa, J. A., & Campo, P. (2018). Suppression of no-longer relevant information in working memory: An alpha-power related mechanism? Biological Psychology, 135, 112-116. https://doi.org/10.1016/j.biopsycho.2018.03.009
Postle, B. R. (2006). Working memory as an emergent property of the mind and brain. Neuroscience, 139(1), 23-38. https://doi.org/10.1016/j.neuroscience.2005.06.005
Qi, S., Ding, C., & Li, H. (2014). Neural correlates of inefficient filtering of emotionally neutral distractors from working memory in trait anxiety. Cognitive, Affective, & Behavioral Neuroscience, 14(1), 253-265. https://doi.org/10.3758/s13415-013-0203-5
Rademaker, R. L., Tredway, C. H., & Tong, F. (2012). Introspective judgments predict the precision and likelihood of successful maintenance of visual working memory. Journal of Vision, 12(13), 21. https://doi.org/10.1167/12.13.21
Rajsic, J., Carlisle, N. B., & Woodman, G. F. (2020). What not to look for: Electrophysiological evidence that searchers prefer positive templates. Neuropsychologia, 140, 107376. https://doi.org/10.1016/j.neuropsychologia.2020.107376
Rajsic, J., Ouslis, N. E., Wilson, D. E., & Pratt, J. (2017). Looking sharp: Becoming a search template boosts precision and stability in visual working memory. Attention, Perception, & Psychophysics, 79(6), 1643-1651. https://doi.org/10.3758/s13414-017-1342-5
Rajsic, J., & Woodman, G. F. (2019). Do we remember templates better so that we can reject distractors better? Attention, Perception, & Psychophysics, 82(1), 269-279. https://doi.org/10.3758/s13414-019-01721-8
Reinhart, R. M. G., Carlisle, N. B., & Woodman, G. F. (2014). Visual working memory gives up attentional control early in learning: Ruling out interhemispheric cancellation. Psychophysiology, 51(8), 800-804. https://doi.org/10.1111/psyp.12217
Reinhart, R. M. G., McClenahan, L. J., & Woodman, G. F. (2016). Attention’s accelerator. Psychological Science, 27(6), 790-798. https://doi.org/10.1177/0956797616636416
Reinhart, R. M. G., & Woodman, G. F. (2014). High stakes trigger the use of multiple memories to enhance the control of attention. Cerebral Cortex, 24(8), 2022-2035. https://doi.org/10.1093/cercor/bht057
Reinhart, R. M. G., & Woodman, G. F. (2015). Enhancing long-term memory with stimulation tunes visual attention in one trial. Proceedings of the National Academy of Sciences of the United States of America, 112(2), 625-630. https://doi.org/10.1073/pnas.1417259112
Rerko, L., & Oberauer, K. (2013). Focused, unfocused, and defocused information in working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(4), 1075-1096. https://doi.org/10.1037/a0031172
Rerko, L., Souza, A. S., & Oberauer, K. (2014). Retro-cue benefits in working memory without sustained focal attention. Memory & Cognition, 42(5), 712-728. https://doi.org/10.3758/s13421-013-0392-8
Roper, Z. J. J., & Vecera, S. P. (2012). Searching for two things at once: Establishment of multiple attentional control settings on a trial-by-trial basis. Psychonomic Bulletin & Review, 19(6), 1114-1121. https://doi.org/10.3758/s13423-012-0297-8
Rosen, V. M., & Engle, R. W. (1997). The role of working memory capacity in retrieval. Journal of Experimental Psychology: General, 126(3), 211-227. https://doi.org/10.1037/0096-3445.126.3.211
Sala, J. B., & Courtney, S. M. (2009). Flexible working memory representation of the relationship between an object and its location as revealed by interactions with attention. Attention, Perception, & Psychophysics, 71(7), 1525-1533. https://doi.org/10.3758/APP.71.7.1525
Salahub, C., Lockhart, H. A., Dube, B., Al-Aidroos, N., & Emrich, S. M. (2019). Electrophysiological correlates of the flexible allocation of visual working memory resources. Scientific Reports, 9(1), 19428. https://doi.org/10.1038/s41598-019-55948-4
Schmidt, B. K., Vogel, E. K., Woodman, G. F., & Luck, S. J. (2002). Voluntary and automatic attentional control of visual working memory. Perception & Psychophysics, 64(5), 754-763. https://doi.org/10.3758/BF03194742
Schmidt, J., & Zelinsky, G. J. (2009). Search guidance is proportional to the categorical specificity of a target cue. The Quarterly Journal of Experimental Psychology, 62(10), 1904-1914. https://doi.org/10.1080/17470210902853530
Schmidt, J., & Zelinsky, G. J. (2017). Adding details to the attentional template offsets search difficulty: Evidence from contralateral delay activity. Journal of Experimental Psychology: Human Perception and Performance, 43(3), 429-437. https://doi.org/10.1037/xhp0000367
Schneider, D., Göddertz, A., Haase, H., Hickey, C., & Wascher, E. (2019). Hemispheric asymmetries in EEG alpha oscillations indicate active inhibition during attentional orienting within working memory. Behavioural Brain Research, 359, 38-46. https://doi.org/10.1016/j.bbr.2018.10.020
Schneider, D., Mertes, C., & Wascher, E. (2015). On the fate of non-cued mental representations in visuo-spatial working memory: Evidence by a retro-cuing paradigm. Behavioural Brain Research, 293, 114-124. https://doi.org/10.1016/j.bbr.2015.07.034
Schneider, D., Mertes, C., & Wascher, E. (2016). The time course of visuo-spatial working memory updating revealed by a retro-cuing paradigm. Scientific Reports, 6(1), 21442. https://doi.org/10.1038/srep21442
Schneider, W. X. (2013). Selective visual processing across competition episodes: A theory of task-driven visual attention and working memory. Philosophical Transactions of the Royal Society of London: Series B, Biological Sciences, 368(1628), 20130060. https://doi.org/10.1098/rstb.2013.0060
Schurgin, M. W. (2018). Visual memory, the long and the short of it: A review of visual working memory and long-term memory. Attention, Perception, & Psychophysics, 80(5), 1035-1056. https://doi.org/10.3758/s13414-018-1522-y
Sligte, I. G., Scholte, H. S., & Lamme, V. A. F. (2008). Are there multiple visual short-term memory stores? PLoS One, 3(2), e1699. https://doi.org/10.1371/journal.pone.0001699
Soto, D., Heinke, D., Humphreys, G. W., & Blanco, M. J. (2005). Early, involuntary top-down guidance of attention from working memory. Journal of Experimental Psychology: Human Perception and Performance, 31(2), 248-261. https://doi.org/10.1037/0096-1523.31.2.248
Soto, D., Hodsoll, J., Rotshtein, P., & Humphreys, G. W. (2008). Automatic guidance of attention from working memory. Trends in Cognitive Sciences, 12(9), 342-348. https://doi.org/10.1016/j.tics.2008.05.007
Soto, D., & Humphreys, G. W. (2009). Automatic selection of irrelevant object features through working memory: Evidence for top-down attentional capture. Experimental Psychology, 56(3), 165-172. https://doi.org/10.1027/1618-3169.56.3.165
Souza, A. S., & Oberauer, K. (2016). In search of the focus of attention in working memory: 13 years of the retro-cue effect. Attention, Perception, & Psychophysics, 78(7), 1839-1860. https://doi.org/10.3758/s13414-016-1108-5
Souza, A. S., Rerko, L., & Oberauer, K. (2015). Refreshing memory traces: Thinking of an item improves retrieval from visual working memory. Annals of the New York Academy of Sciences, 1339(1), 20-31. https://doi.org/10.1111/nyas.12603
Souza, A. S., Rerko, L., & Oberauer, K. (2016). Getting more from visual working memory: Retro-cues enhance retrieval and protect from visual interference. Journal of Experimental Psychology: Human Perception and Performance, 42(6), 890-910. https://doi.org/10.1037/xhp0000192
Stroud, M. J., Menneer, T., Cave, K. R., Donnelly, N., & Rayner, K. (2011). Search for multiple targets of different colours: Misguided eye movements reveal a reduction of colour selectivity. Applied Cognitive Psychology, 25(6), 971-982. https://doi.org/10.1002/acp.1790
Tabi, Y. A., Husain, M., & Manohar, S. G. (2019). Recall cues interfere with retrieval from visuospatial working memory. British Journal of Psychology, 110(2), 288-305. https://doi.org/10.1111/bjop.12374
Tas, A. C., Luck, S. J., & Hollingworth, A. (2016). The relationship between visual attention and visual working memory encoding: A dissociation between covert and overt orienting. Journal of Experimental Psychology: Human Perception and Performance, 42(8), 1121-1138. https://doi.org/10.1037/xhp0000212
Theeuwes, J. (1991). Cross-dimensional perceptual selectivity. Perception & Psychophysics, 50(2), 184-193. https://doi.org/10.3758/BF03212219
Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & Psychophysics, 51(6), 599-606. https://doi.org/10.3758/BF03211656
Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97-136. https://doi.org/10.1016/0010-0285(80)90005-5
Unsworth, N., Fukuda, K., Awh, E., & Vogel, E. K. (2014). Working memory and fluid intelligence: Capacity, attention control, and secondary memory retrieval. Cognitive Psychology, 71, 1-26. https://doi.org/10.1016/j.cogpsych.2014.01.003
van den Berg, R., Awh, E., & Ma, W. J. (2014). Factorial comparison of working memory models. Psychological Review, 121(1), 124-149. https://doi.org/10.1037/a0035234
van den Berg, R., Shin, H., Chou, W.-C., George, R., & Ma, W. J. (2012). Variability in encoding precision accounts for visual short-term memory limitations. Proceedings of the National Academy of Sciences of the United States of America, 109(22), 8780-8785. https://doi.org/10.1073/pnas.1117465109
van Ede, F. (2018). Mnemonic and attentional roles for states of attenuated alpha oscillations in perceptual working memory: A review. European Journal of Neuroscience, 48(7), 2509-2515. https://doi.org/10.1111/ejn.13759
van Loon, A. M., Olmos-Solis, K., & Olivers, C. N. L. (2017). Subtle eye movement metrics reveal task-relevant representations prior to visual search. Journal of Vision, 17(6), 13. https://doi.org/10.1167/17.6.13
van Moorselaar, D., Theeuwes, J., & Olivers, C. N. L. (2014). In competition for the attentional template: Can multiple items within visual working memory guide attention? Journal of Experimental Psychology: Human Perception and Performance, 40(4), 1450-1464. https://doi.org/10.1037/a0036229
Vandenbroucke, A. R. E., Sligte, I. G., & Lamme, V. A. F. (2011). Manipulations of attention dissociate fragile visual short-term memory from visual working memory. Neuropsychologia, 49(6), 1559-1568. https://doi.org/10.1016/j.neuropsychologia.2010.12.044
Vickery, T. J., King, L.-W., & Jiang, Y. (2005). Setting up the target template in visual search. Journal of Vision, 5(1), 8. https://doi.org/10.1167/5.1.8
Vissers, M. E., van Driel, J., & Slagter, H. A. (2016). Proactive, but not reactive, distractor filtering relies on local modulation of alpha oscillatory activity. Journal of Cognitive Neuroscience, 28(12), 1964-1979. https://doi.org/10.1162/jocn_a_01017
Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984), 748-751. https://doi.org/10.1038/nature02447
Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067), 500-503. https://doi.org/10.1038/nature04171
Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 27(1), 92-114. https://doi.org/10.1037/0096-1523.27.1.92
Wilken, P., & Ma, W. J. (2004). A detection theory account of change detection. Journal of Vision, 4(12), 11. https://doi.org/10.1167/4.12.11
Williams, R. S., Pratt, J., & Ferber, S. (2020). Directed avoidance and its effect on visual working memory. Cognition, 201, 104277. https://doi.org/10.1016/j.cognition.2020.104277
Wolfe, J. M. (1994). Guided Search 2.0: A revised model of visual search. Psychonomic Bulletin & Review, 1(2), 202-238. https://doi.org/10.3758/BF03200774
Wolfe, J. M. (2007). Guided Search 4.0: Current progress with a model of visual search. In W. D. Gray (Ed.), Integrated models of cognitive systems. (pp. 99-119). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195189193.003.0008
Wolfe, J. M. (2020). Visual search: How do we find what we are looking for? Annual Review of Vision Science, 6(1), 1-24. https://doi.org/10.1146/annurev-vision-091718-015048
Wolfe, J. M., Horowitz, T. S., Kenner, N., Hyle, M., & Vasan, N. (2004). How fast can you change your mind? The speed of top-down guidance in visual search. Vision Research, 44(12), 1411-1426. https://doi.org/10.1016/j.visres.2003.11.024
Wolfe, J. M., & Van Wert, M. J. (2010). Varying target prevalence reveals two dissociable decision criteria in visual search. Current Biology, 20(2), 121-124. https://doi.org/10.1016/j.cub.2009.11.066
Woodman, G. F., & Arita, J. T. (2011). Direct electrophysiological measurement of attentional templates in visual working memory. Psychological Science, 22(2), 212-215. https://doi.org/10.1177/0956797610395395
Woodman, G. F., Carlisle, N. B., & Reinhart, R. M. G. (2013). Where do we store the memory representations that guide attention? Journal of Vision, 13(3), 1. https://doi.org/10.1167/13.3.1
Woodman, G. F., & Luck, S. J. (2007). Do the contents of visual working memory automatically influence attentional selection during visual search? Journal of Experimental Psychology: Human Perception and Performance, 33(2), 363-377. https://doi.org/10.1037/0096-1523.33.2.363
Woodman, G. F., Luck, S. J., & Schall, J. D. (2007). The role of working memory representations in the control of attention. Cerebral Cortex, 17(suppl_1), i118-i124. https://doi.org/10.1093/cercor/bhm065
Yang, H., & Zelinsky, G. J. (2009). Visual search is guided to categorically-defined targets. Vision Research, 49(16), 2095-2103. https://doi.org/10.1016/j.visres.2009.05.017
Zanto, T. P., & Gazzaley, A. (2009). Neural suppression of irrelevant information underlies optimal working memory performance. The Journal of Neuroscience, 29(10), 3059-3066. https://doi.org/10.1523/JNEUROSCI.4621-08.2009
Zhang, B., Liu, S., Doro, M., & Galfano, G. (2018). Attentional guidance from multiple working memory representations: Evidence from eye movements. Scientific Reports, 8(1), 13876. https://doi.org/10.1038/s41598-018-32144-4
Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453(7192), 233-235. https://doi.org/10.1038/nature06860
Zhou, C., Lorist, M. M., & Mathôt, S. (2020). Concurrent guidance of attention by multiple working memory items: Behavioral and computational evidence. Attention, Perception, & Psychophysics, 82(6), 2950-2962. https://doi.org/10.3758/s13414-020-02048-5
Zokaei, N., Gorgoraptis, N., Bahrami, B., Bays, P. M., & Husain, M. (2011). Precision of working memory for visual motion sequences and transparent motion surfaces. Journal of Vision, 11(14), 2. https://doi.org/10.1167/11.14.2
Zokaei, N., Ning, S., Manohar, S., Feredoes, E., & Husain, M. (2014). Flexibility of representational states in working memory. Frontiers in Human Neuroscience, 8, 853. https://doi.org/10.3389/fnhum.2014.00853