Phân bổ tài nguyên trong bộ nhớ làm việc: Những hệ quả lý thuyết và thực nghiệm cho quá trình tìm kiếm thị giác

Psychonomic Bulletin & Review - Tập 28 - Trang 1093-1111 - 2021
Stanislas Huynh Cong1, Dirk Kerzel1
1Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland

Tóm tắt

Gần đây, bộ nhớ làm việc (WM) đã được khái niệm hóa như một nguồn tài nguyên hạn chế, được phân phối một cách linh hoạt và chiến lược giữa một số lượng biểu diễn không giới hạn. Ngoài việc cải thiện độ chính xác của các biểu diễn trong WM, việc phân bổ tài nguyên cũng có thể hình thành cách mà những biểu diễn này hoạt động như các mẫu hướng sự chú ý để hướng dẫn tìm kiếm thị giác. Trong bài viết này, chúng tôi đã xem xét các bằng chứng gần đây ủng hộ giả định này và đề xuất ba nguyên tắc chính điều khiển mối quan hệ giữa tài nguyên WM và tìm kiếm thị giác hướng mẫu. Thứ nhất, việc phân bổ tài nguyên cho một mẫu chú ý có ảnh hưởng đến tìm kiếm thị giác, vì nó có thể cải thiện sự hướng dẫn của sự chú ý thị giác, tạo điều kiện cho việc nhận diện mục tiêu và/hoặc bảo vệ mẫu chú ý chống lại sự can thiệp. Thứ hai, việc phân bổ lượng tài nguyên lớn nhất cho một biểu diễn trong WM là không đủ để đưa biểu diễn này đạt trạng thái mẫu chú ý và do đó, có khả năng hướng dẫn tìm kiếm thị giác. Thứ ba, biểu diễn đạt được trạng thái mẫu chú ý, dù trong quá trình mã hóa hay trong khi duy trì, nhận được một lượng tài nguyên WM tỷ lệ với mối liên quan của nó đối với tìm kiếm thị giác. Như vậy, giả thuyết tài nguyên về tìm kiếm thị giác cấu thành một khuôn khổ tiết kiệm và mạnh mẽ, cung cấp những góc nhìn mới về các tranh cãi trước đây và bổ sung cho các mô hình hiện có về tìm kiếm thị giác hướng mẫu.

Từ khóa

#bộ nhớ làm việc #tài nguyên #mẫu chú ý #tìm kiếm thị giác #hướng dẫn sự chú ý

Tài liệu tham khảo

Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15(2), 106-111. https://doi.org/10.1111/j.0963-7214.2004.01502006.x Ansorge, U., Horstmann, G., & Carbone, E. (2005). Top-down contingent capture by color: Evidence from RT distribution analyses in a manual choice reaction task. Acta Psychologica, 120(3), 243-266. https://doi.org/10.1016/j.actpsy.2005.04.004 Awh, E., & Vogel, E. K. (2008). The bouncer in the brain. Nature Neuroscience, 11(1), 5-6. https://doi.org/10.1038/nn0108-5 Awh, E., Vogel, E. K., & Oh, S. H. (2006). Interactions between attention and working memory. Neuroscience, 139(1), 201-208. https://doi.org/10.1016/j.neuroscience.2005.08.023 Bacon, W. F., & Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. Perception & Psychophysics, 55(5), 485-496. https://doi.org/10.3758/BF03205306 Baddeley, A. (2010). Working memory. Current Biology, 20(4), R136-R140. https://doi.org/10.1016/j.cub.2009.12.014 Baddeley, A., & Hitch, G. (1974). Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 8, pp. 47-89). Elsevier Academic Press. https://doi.org/10.1016/S0079-7421(08)60452-1 Bahle, B., Beck, V. M., & Hollingworth, A. (2018). The architecture of interaction between visual working memory and visual attention. Journal of Experimental Psychology: Human Perception and Performance, 44(7), 992-1011. https://doi.org/10.1037/xhp0000509 Bahle, B., Thayer, D. D., Mordkoff, J. T., & Hollingworth, A. (2020). The architecture of working memory: Features from multiple remembered objects produce parallel, coactive guidance of attention in visual search. Journal of Experimental Psychology: General, 149(5), 967-983. https://doi.org/10.1037/xge0000694 Barrett, D. J. K., & Zobay, O. (2014). Attentional control via parallel target-templates in dual-target search. PLoS One, 9(1), e86848. https://doi.org/10.1371/journal.pone.0086848 Barrouillet, P., Bernardin, S., & Camos, V. (2004). Time constraints and resource sharing in adults' working memory spans. Journal of Experimental Psychology: General, 133(1), 83-100. https://doi.org/10.1037/0096-3445.133.1.83 Barrouillet, P., & Camos, V. (2007). The time-based resource-sharing model of working memory. In N. Osaka (Ed.), The Cognitive Neuroscience of Working Memory (pp. 59-80). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198570394.003.0004 Bays, P. M., Catalao, R. F. G., & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. Journal of Vision, 9(10), 7. https://doi.org/10.1167/9.10.7 Bays, P. M., Gorgoraptis, N., Wee, N., Marshall, L., & Husain, M. (2011). Temporal dynamics of encoding, storage, and reallocation of visual working memory. Journal of Vision, 11(10), 6. https://doi.org/10.1167/11.10.6 Bays, P. M., & Husain, M. (2008). Dynamic shifts of limited working memory resources in human vision. Science, 321(5890), 851-854. https://doi.org/10.1126/science.1158023 Beck, V. M., & Hollingworth, A. (2017). Competition in saccade target selection reveals attentional guidance by simultaneously active working memory representations. Journal of Experimental Psychology: Human Perception and Performance, 43(2), 225-230. https://doi.org/10.1037/xhp0000306 Beck, V. M., Hollingworth, A., & Luck, S. J. (2012). Simultaneous control of attention by multiple working memory representations. Psychological Science, 23(8), 887-898. https://doi.org/10.1177/0956797612439068 Berggren, N., Nako, R., & Eimer, M. (2020). Out with the old: New target templates impair the guidance of visual search by preexisting task goals. Journal of Experimental Psychology: General, 149(6), 1156-1168. https://doi.org/10.1037/xge0000697 Biderman, D., Biderman, N., Zivony, A., & Lamy, D. (2017). Contingent capture is weakened in search for multiple features from different dimensions. Journal of Experimental Psychology: Human Perception and Performance, 43(12), 1974-1992. https://doi.org/10.1037/xhp0000422 Bravo, M. J., & Farid, H. (2009). The specificity of the search template. Journal of Vision, 9(1), 34. https://doi.org/10.1167/9.1.34 Bravo, M. J., & Farid, H. (2014). Informative cues can slow search: The cost of matching a specific template. Attention, Perception, & Psychophysics, 76(1), 32-39. https://doi.org/10.3758/s13414-013-0532-z Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97(4), 523-547. https://doi.org/10.1037/0033-295X.97.4.523 Bundesen, C., Habekost, T., & Kyllingsbæk, S. (2005). A neural theory of visual attention: Bridging cognition and neurophysiology. Psychological Review, 112(2), 291-328. https://doi.org/10.1037/0033-295X.112.2.291 Cantor, J., & Engle, R. W. (1993). Working-memory capacity as long-term memory activation: An individual-differences approach. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19(5), 1101-1114. https://doi.org/10.1037/0278-7393.19.5.1101 Carlisle, N. B., Arita, J. T., Pardo, D., & Woodman, G. F. (2011). Attentional templates in visual working memory. The Journal of Neuroscience, 31(25), 9315-9322. https://doi.org/10.1523/JNEUROSCI.1097-11.2011 Carlisle, N. B., & Woodman, G. F. (2011). When memory is not enough: Electrophysiological evidence for goal-dependent use of working memory representations in guiding visual attention. Journal of Cognitive Neuroscience, 23(10), 2650-2664. https://doi.org/10.1162/jocn.2011.21602 Carlisle, N. B., & Woodman, G. F. (2019). Quantifying the attentional impact of working memory matching targets and distractors. Visual Cognition, 27(5-8), 452-466. https://doi.org/10.1080/13506285.2019.1634172 Castelhano, M. S., Pollatsek, A., & Cave, K. R. (2008). Typicality aids search for an unspecified target, but only in identification and not in attentional guidance. Psychonomic Bulletin & Review, 15(4), 795-801. https://doi.org/10.3758/PBR.15.4.795 Chen, Y., & Du, F. (2017). Two visual working memory representations simultaneously control attention. Scientific Reports, 7(1), 6107. https://doi.org/10.1038/s41598-017-05865-1 Christie, G. J., Livingstone, A. C., & McDonald, J. J. (2014). Searching for inefficiency in visual search. Journal of Cognitive Neuroscience, 27(1), 46-56. https://doi.org/10.1162/jocn_a_00716 Christophel, T. B., Klink, P. C., Spitzer, B., Roelfsema, P. R., & Haynes, J.-D. (2017). The distributed nature of working memory. Trends in Cognitive Sciences, 21(2), 111-124. https://doi.org/10.1016/j.tics.2016.12.007 Chun, M. M. (2011). Visual working memory as visual attention sustained internally over time. Neuropsychologia, 49(6), 1407-1409. https://doi.org/10.1016/j.neuropsychologia.2011.01.029 Cowan, N. (1999). An embedded-processes model of working memory. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 62-101). Cambridge University Press. https://doi.org/10.1017/CBO9781139174909.006 Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87-114. https://doi.org/10.1017/S0140525X01003922 Cowan, N. (2005). Working memory capacity. Psychology Press. https://doi.org/10.4324/9780203342398 Cowan, N. (2017). The many faces of working memory and short-term storage. Psychonomic Bulletin & Review, 24(4), 1158-1170. https://doi.org/10.3758/s13423-016-1191-6 Cowan, N., Donnell, K., & Saults, J. S. (2013). A list-length constraint on incidental item-to-item associations. Psychonomic Bulletin & Review, 20(6), 1253-1258. https://doi.org/10.3758/s13423-013-0447-7 Cowan, N., & Morey, C. C. (2006). Visual working memory depends on attentional filtering. Trends in Cognitive Sciences, 10(4), 139-141. https://doi.org/10.1016/j.tics.2006.02.001 Cunningham, C. A., & Wolfe, J. M. (2014). The role of object categories in hybrid visual and memory search. Journal of Experimental Psychology: General, 143(4), 1585-1599. https://doi.org/10.1037/a0036313 Cusack, R., Lehmann, M., Veldsman, M., & Mitchell, D. J. (2009). Encoding strategy and not visual working memory capacity correlates with intelligence. Psychonomic Bulletin & Review, 16(4), 641-647. https://doi.org/10.3758/PBR.16.4.641 D'Esposito, M., & Postle, B. R. (2015). The cognitive neuroscience of working memory. Annual Review of Psychology, 66(1), 115-142. https://doi.org/10.1146/annurev-psych-010814-015031 de Vries, I. E. J., Slagter, H. A., & Olivers, C. N. L. (2020). Oscillatory Control over Representational States in Working Memory. Trends in Cognitive Sciences, 24(2), 150-162. https://doi.org/10.1016/j.tics.2019.11.006 de Vries, I. E. J., van Driel, J., Karacaoglu, M., & Olivers, C. N. L. (2018). Priority Switches in Visual Working Memory are Supported by Frontal Delta and Posterior Alpha Interactions. Cerebral Cortex, 28(11), 4090-4104. https://doi.org/10.1093/cercor/bhy223 de Vries, I. E. J., van Driel, J., & Olivers, C. N. L. (2017). Posterior α EEG dynamics dissociate current from future goals in working memory-guided visual search. The Journal of Neuroscience, 37(6), 1591-1603. https://doi.org/10.1523/JNEUROSCI.2945-16.2016 de Vries, I. E. J., van Driel, J., & Olivers, C. N. L. (2019). Decoding the status of working memory representations in preparation of visual selection. NeuroImage, 191, 549-559. https://doi.org/10.1016/j.neuroimage.2019.02.069 Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18(1), 193-222. https://doi.org/10.1146/annurev.ne.18.030195.001205 Dombrowe, I., Donk, M., & Olivers, C. N. L. (2011). The costs of switching attentional sets. Attention, Perception, & Psychophysics, 73(8), 2481-2488. https://doi.org/10.3758/s13414-011-0198-3 Downing, P. E., & Dodds, C. (2004). Competition in visual working memory for control of search. Visual Cognition, 11(6), 689-703. https://doi.org/10.1080/13506280344000446 Dube, B., & Al-Aidroos, N. (2019). Distinct prioritization of visual working memory representations for search and for recall. Attention, Perception, & Psychophysics, 81(5), 1253-1261. https://doi.org/10.3758/s13414-018-01664-6 Dube, B., Emrich, S. M., & Al-Aidroos, N. (2017). More than a filter: Feature-based attention regulates the distribution of visual working memory resources. Journal of Experimental Psychology: Human Perception and Performance, 43(10), 1843-1854. https://doi.org/10.1037/xhp0000428 Dube, B., Lockhart, H. A., Rak, S., Emrich, S., & Al-Aidroos, N. (2019a). Limits to the flexible re-distribution of visual working memory resources after encoding. PsyArXiv. https://doi.org/10.31234/osf.io/kmqtr Dube, B., Lumsden, A., & Al-Aidroos, N. (2019b). Probabilistic retro-cues do not determine state in visual working memory. Psychonomic Bulletin & Review, 26(2), 641-646. https://doi.org/10.3758/s13423-018-1533-7 Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433-458. https://doi.org/10.1037/0033-295X.96.3.433 Eimer, M. (1996). The N2pc component as an indicator of attentional selectivity. Electroencephalography and Clinical Neurophysiology, 99(3), 225-234. https://doi.org/10.1016/0013-4694(96)95711-9 Eimer, M. (2014). The neural basis of attentional control in visual search. Trends in Cognitive Sciences, 18(10), 526-535. https://doi.org/10.1016/j.tics.2014.05.005 Eimer, M., & Kiss, M. (2008). Involuntary attentional capture is determined by task set: Evidence from event-related brain potentials. Journal of Cognitive Neuroscience, 20(8), 1423-1433. https://doi.org/10.1162/jocn.2008.20099 Emrich, S. M., Lockhart, H. A., & Al-Aidroos, N. (2017). Attention mediates the flexible allocation of visual working memory resources. Journal of Experimental Psychology: Human Perception and Performance, 43(7), 1454-1465. https://doi.org/10.1037/xhp0000398 Engle, R. W. (2002). Working memory capacity as executive attention. Current Directions in Psychological Science, 11(1), 19-23. https://doi.org/10.1111/1467-8721.00160 Engle, R. W. (2018). Working memory and executive attention: A revisit. Perspectives on Psychological Science, 13(2), 190-193. https://doi.org/10.1177/1745691617720478 Fan, L., Sun, M., Xu, M., Li, Z., Diao, L., & Zhang, X. (2019). Multiple representations in visual working memory simultaneously guide attention: The type of memory-matching representation matters. Acta Psychologica, 192, 126-137. https://doi.org/10.1016/j.actpsy.2018.11.005 Foerster, R. M., & Schneider, W. X. (2018). Involuntary top-down control by search-irrelevant features: Visual working memory biases attention in an object-based manner. Cognition, 172, 37-45. https://doi.org/10.1016/j.cognition.2017.12.002 Folk, C. L., & Remington, R. (1998). Selectivity in distraction by irrelevant featural singletons: Evidence for two forms of attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 847-858. https://doi.org/10.1037/0096-1523.24.3.847 Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 1030-1044. https://doi.org/10.1037/0096-1523.18.4.1030 Fougnie, D., Suchow, J. W., & Alvarez, G. A. (2012). Variability in the quality of visual working memory. Nature Communications, 3(1), 1229. https://doi.org/10.1038/ncomms2237 Franconeri, S. L., Alvarez, G. A., & Cavanagh, P. (2013). Flexible cognitive resources: Competitive content maps for attention and memory. Trends in Cognitive Sciences, 17(3), 134-141. https://doi.org/10.1016/j.tics.2013.01.010 Frătescu, M., Van Moorselaar, D., & Mathôt, S. (2019). Can you have multiple attentional templates? Large-scale replications of Van Moorselaar, Theeuwes, and Olivers (2014) and Hollingworth and Beck (2016). Attention, Perception, & Psychophysics, 81(8), 2700-2709. https://doi.org/10.3758/s13414-019-01791-8 Fukuda, K., & Woodman, G. F. (2017). Visual working memory buffers information retrieved from visual long-term memory. Proceedings of the National Academy of Sciences of the United States of America, 114(20), 5306-5311. https://doi.org/10.1073/pnas.1617874114 Gao, Z., Yu, S., Zhu, C., Shui, R., Weng, X., Li, P., & Shen, M. (2016). Object-based encoding in visual working memory: Evidence from memory-driven attentional capture. Scientific Reports, 6(1), 22822. https://doi.org/10.1038/srep22822 Gazzaley, A. (2011). Influence of early attentional modulation on working memory. Neuropsychologia, 49(6), 1410-1424. https://doi.org/10.1016/j.neuropsychologia.2010.12.022 Gazzaley, A., & Nobre, A. C. (2012). Top-down modulation: Bridging selective attention and working memory. Trends in Cognitive Sciences, 16(2), 129-135. https://doi.org/10.1016/j.tics.2011.11.014 Gilchrist, A. L., & Cowan, N. (2011). Can the focus of attention accommodate multiple, separate items? Journal of Experimental Psychology: Learning, Memory, and Cognition, 37(6), 1484-1502. https://doi.org/10.1037/a0024352 Gorgoraptis, N., Catalao, R. F. G., Bays, P. M., & Husain, M. (2011). Dynamic updating of working memory resources for visual objects. The Journal of Neuroscience, 31(23), 8502-8511. https://doi.org/10.1523/JNEUROSCI.0208-11.2011 Grubert, A., Carlisle, N. B., & Eimer, M. (2016). The control of single-color and multiple-color visual search by attentional templates in working memory and in long-term memory. Journal of Cognitive Neuroscience, 28(12), 1947-1963. https://doi.org/10.1162/jocn_a_01020 Grubert, A., & Eimer, M. (2015). Rapid parallel attentional target selection in single-color and multiple-color visual search. Journal of Experimental Psychology: Human Perception and Performance, 41(1), 86-101. https://doi.org/10.1037/xhp0000019 Grubert, A., & Eimer, M. (2016). All set, indeed! N2pc components reveal simultaneous attentional control settings for multiple target colors. Journal of Experimental Psychology: Human Perception and Performance, 42(8), 1215-1230. https://doi.org/10.1037/xhp0000221 Grubert, A., & Eimer, M. (2018). The time course of target template activation processes during preparation for visual search. The Journal of Neuroscience, 38(44), 9527-9538. https://doi.org/10.1523/JNEUROSCI.0409-18.2018 Grubert, A., & Eimer, M. (2020). Preparatory template activation during search for alternating targets. Journal of Cognitive Neuroscience, 32(8), 1525-1535. https://doi.org/10.1162/jocn_a_01565 Gunseli, E., Olivers, C. N. L., & Meeter, M. (2014). Effects of search difficulty on the selection, maintenance, and learning of attentional templates. Journal of Cognitive Neuroscience, 26(9), 2042-2054. https://doi.org/10.1162/jocn_a_00600 Gunseli, E., Olivers, C. N. L., & Meeter, M. (2016). Task-irrelevant memories rapidly gain attentional control with learning. Journal of Experimental Psychology: Human Perception and Performance, 42(3), 354-362. https://doi.org/10.1037/xhp0000134 Hamblin-Frohman, Z., & Becker, S. I. (2019). Attending object features interferes with visual working memory regardless of eye-movements. Journal of Experimental Psychology: Human Perception and Performance, 45(8), 1049-1061. https://doi.org/10.1037/xhp0000651 Hollingworth, A., & Beck, V. M. (2016). Memory-based attention capture when multiple items are maintained in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 42(7), 911-917. https://doi.org/10.1037/xhp0000230 Hollingworth, A., & Hwang, S. (2013). The relationship between visual working memory and attention: Retention of precise colour information in the absence of effects on perceptual selection. Philosophical Transactions of the Royal Society of London: Series B, Biological Sciences, 368(1628), 20130061. https://doi.org/10.1098/rstb.2013.0061 Hout, M. C., & Goldinger, S. D. (2015). Target templates: The precision of mental representations affects attentional guidance and decision-making in visual search. Attention, Perception, & Psychophysics, 77(1), 128-149. https://doi.org/10.3758/s13414-014-0764-6 Houtkamp, R., & Roelfsema, P. R. (2006). The effect of items in working memory on the deployment of attention and the eyes during visual search. Journal of Experimental Psychology: Human Perception and Performance, 32(2), 423-442. https://doi.org/10.1037/0096-1523.32.2.423 Houtkamp, R., & Roelfsema, P. R. (2009). Matching of visual input to only one item at any one time. Psychological Research, 73(3), 317-326. https://doi.org/10.1007/s00426-008-0157-3 Huang, L., & Pashler, H. (2007). Working memory and the guidance of visual attention: Consonance-driven orienting. Psychonomic Bulletin & Review, 14(1), 148-153. https://doi.org/10.3758/BF03194042 Huynh Cong, S., & Kerzel, D. (2020). New templates interfere with existing templates depending on their respective priority in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 46(11), 1313-1327. https://doi.org/10.1037/xhp0000859 Irons, J. L., Folk, C. L., & Remington, R. W. (2012). All set! Evidence of simultaneous attentional control settings for multiple target colors. Journal of Experimental Psychology: Human Perception and Performance, 38(3), 758-775. https://doi.org/10.1037/a0026578 Jenkins, M., Grubert, A., & Eimer, M. (2018). Category-based attentional guidance can operate in parallel for multiple target objects. Biological Psychology, 135, 211-219. https://doi.org/10.1016/j.biopsycho.2018.04.006 Jost, K., & Mayr, U. (2016). Switching between filter settings reduces the efficient utilization of visual working memory. Cognitive, Affective, & Behavioral Neuroscience, 16(2), 207-218. https://doi.org/10.3758/s13415-015-0380-5 Kane, M. J., Bleckley, M. K., Conway, A. R. A., & Engle, R. W. (2001). A controlled-attention view of working-memory capacity. Journal of Experimental Psychology: General, 130(2), 169-183. https://doi.org/10.1037/0096-3445.130.2.169 Kane, M. J., & Engle, R. W. (2000). Working-memory capacity, proactive interference, and divided attention: Limits on long-term memory retrieval. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(2), 336-358. https://doi.org/10.1037/0278-7393.26.2.336 Kerzel, D. (2019). The precision of attentional selection is far worse than the precision of the underlying memory representation. Cognition, 186, 20-31. https://doi.org/10.1016/j.cognition.2019.02.001 Kerzel, D., & Andres, M. K.-S. (2020). Object features reinstated from episodic memory guide attentional selection. Cognition, 197, 104158. https://doi.org/10.1016/j.cognition.2019.104158 Kerzel, D., & Witzel, C. (2019). The allocation of resources in visual working memory and multiple attentional templates. Journal of Experimental Psychology: Human Perception and Performance, 45(5), 645-658. https://doi.org/10.1037/xhp0000637 Keshvari, S., van den Berg, R., & Ma, W. J. (2013). No evidence for an item limit in change detection. PLoS Computational Biology, 9(2), e1002927. https://doi.org/10.1371/journal.pcbi.1002927 Kim, S., & Cho, Y. S. (2016). Memory-based attentional capture by colour and shape contents in visual working memory. Visual Cognition, 24(1), 51-62. https://doi.org/10.1080/13506285.2016.1184734 Kiyonaga, A., & Egner, T. (2013). Working memory as internal attention: Toward an integrative account of internal and external selection processes. Psychonomic Bulletin & Review, 20(2), 228-242. https://doi.org/10.3758/s13423-012-0359-y Kristjánsson, T., & Kristjánsson, Á. (2018). Foraging through multiple target categories reveals the flexibility of visual working memory. Acta Psychologica, 183, 108-115. https://doi.org/10.1016/j.actpsy.2017.12.005 Kumar, S., Soto, D., & Humphreys, G. W. (2009). Electrophysiological evidence for attentional guidance by the contents of working memory. European Journal of Neuroscience, 30(2), 307-317. https://doi.org/10.1111/j.1460-9568.2009.06805.x Kuo, B.-C., Yeh, Y.-Y., Chen, A. J. W., & D’Esposito, M. (2011). Functional connectivity during top-down modulation of visual short-term memory representations. Neuropsychologia, 49(6), 1589-1596. https://doi.org/10.1016/j.neuropsychologia.2010.12.043 Landman, R., Spekreijse, H., & Lamme, V. A. F. (2003). Large capacity storage of integrated objects before change blindness. Vision Research, 43(2), 149-164. https://doi.org/10.1016/S0042-6989(02)00402-9 Leblanc, É., Prime, D. J., & Jolicoeur, P. (2007). Tracking the location of visuospatial attention in a contingent capture paradigm. Journal of Cognitive Neuroscience, 20(4), 657-671. https://doi.org/10.1162/jocn.2008.20051 Lee, E.-Y., Cowan, N., Vogel, E. K., Rolan, T., Valle-Inclán, F., & Hackley, S. A. (2010). Visual working memory deficits in patients with Parkinson's disease are due to both reduced storage capacity and impaired ability to filter out irrelevant information. Brain, 133(9), 2677-2689. https://doi.org/10.1093/brain/awq197 Lepsien, J., Thornton, I., & Nobre, A. C. (2011). Modulation of working-memory maintenance by directed attention. Neuropsychologia, 49(6), 1569-1577. https://doi.org/10.1016/j.neuropsychologia.2011.03.011 Lien, M.-C., Ruthruff, E., Goodin, Z., & Remington, R. W. (2008). Contingent attentional capture by top-down control settings: Converging evidence from event-related potentials. Journal of Experimental Psychology: Human Perception and Performance, 34(3), 509-530. https://doi.org/10.1037/0096-1523.34.3.509 Liesefeld, A. M., Liesefeld, H. R., & Zimmer, H. D. (2013). Intercommunication between prefrontal and posterior brain regions for protecting visual working memory from distractor interference. Psychological Science, 25(2), 325-333. https://doi.org/10.1177/0956797613501170 Logan, G. D. (2002). An instance theory of attention and memory. Psychological Review, 109(2), 376-400. https://doi.org/10.1037/0033-295X.109.2.376 Luck, S. J., & Hillyard, S. A. (1994). Electrophysiological correlates of feature analysis during visual search. Psychophysiology, 31(3), 291-308. https://doi.org/10.1111/j.1469-8986.1994.tb02218.x Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279-281. https://doi.org/10.1038/36846 Luck, S. J., & Vogel, E. K. (2013). Visual working memory capacity: From psychophysics and neurobiology to individual differences. Trends in Cognitive Sciences, 17(8), 391-400. https://doi.org/10.1016/j.tics.2013.06.006 Luria, R., Balaban, H., Awh, E., & Vogel, E. K. (2016). The contralateral delay activity as a neural measure of visual working memory. Neuroscience and Biobehavioral Reviews, 62, 100-108. https://doi.org/10.1016/j.neubiorev.2016.01.003 Luria, R., Sessa, P., Gotler, A., Jolicœur, P., & Dell'Acqua, R. (2009). Visual short-term memory capacity for simple and complex objects. Journal of Cognitive Neuroscience, 22(3), 496-512. https://doi.org/10.1162/jocn.2009.21214 Ma, W. J., Husain, M., & Bays, P. M. (2014). Changing concepts of working memory. Nature Neuroscience, 17(3), 347-356. https://doi.org/10.1038/nn.3655 Machizawa, M. G., Goh, C. C. W., & Driver, J. (2012). Human visual short-term memory precision can be varied at will when the number of retained items is low. Psychological Science, 23(6), 554-559. https://doi.org/10.1177/0956797611431988 Makovski, T., & Jiang, Y. V. (2007). Distributing versus focusing attention in visual short-term memory. Psychonomic Bulletin & Review, 14(6), 1072-1078. https://doi.org/10.3758/BF03193093 Malcolm, G. L., & Henderson, J. M. (2009). The effects of target template specificity on visual search in real-world scenes: Evidence from eye movements. Journal of Vision, 9(11), 8. https://doi.org/10.1167/9.11.8 Malcolm, G. L., & Henderson, J. M. (2010). Combining top-down processes to guide eye movements during real-world scene search. Journal of Vision, 10(2), 4. https://doi.org/10.1167/10.2.4 Matsukura, M., Luck, S. J., & Vecera, S. P. (2007). Attention effects during visual short-term memory maintenance: Protection or prioritization? Perception & Psychophysics, 69(8), 1422-1434. https://doi.org/10.3758/BF03192957 Maxcey-Richard, A. M., & Hollingworth, A. (2013). The strategic retention of task-relevant objects in visual working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(3), 760-772. https://doi.org/10.1037/a0029496 McElree, B. (2001). Working memory and focal attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27(3), 817-835. https://doi.org/10.1037/0278-7393.27.3.817 McElree, B. (2006). Accessing recent events. In B. H. Ross (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 46, pp. 155-200). Elsevier Academic Press. https://doi.org/10.1016/S0079-7421(06)46005-9 McNab, F., & Klingberg, T. (2008). Prefrontal cortex and basal ganglia control access to working memory. Nature Neuroscience, 11(1), 103-107. https://doi.org/10.1038/nn2024 Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24(1), 167-202. https://doi.org/10.1146/annurev.neuro.24.1.167 Moore, K. S., & Weissman, D. H. (2010). Involuntary transfer of a top-down attentional set into the focus of attention: Evidence from a contingent attentional capture paradigm. Attention, Perception, & Psychophysics, 72(6), 1495-1509. https://doi.org/10.3758/APP.72.6.1495 Moran, J., & Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex. Science, 229(4715), 782-784. https://doi.org/10.1126/science.4023713 Motter, B. C. (1994). Neural correlates of attentive selection for color or luminance in extrastriate area V4. The Journal of Neuroscience, 14(4), 2178-2189. https://doi.org/10.1523/JNEUROSCI.14-04-02178.1994 Murray, A. M., Nobre, A. C., & Stokes, M. G. (2011). Markers of preparatory attention predict visual short-term memory performance. Neuropsychologia, 49(6), 1458-1465. https://doi.org/10.1016/j.neuropsychologia.2011.02.016 Myers, N. E., Stokes, M. G., & Nobre, A. C. (2017). Prioritizing information during working memory: Beyond sustained internal attention. Trends in Cognitive Sciences, 21(6), 449-461. https://doi.org/10.1016/j.tics.2017.03.010 Myers, N. E., Walther, L., Wallis, G., Stokes, M. G., & Nobre, A. C. (2015). Temporal dynamics of attention during encoding versus maintenance of working memory: Complementary views from event-related potentials and alpha-band oscillations. Journal of Cognitive Neuroscience, 27(3), 492-508. https://doi.org/10.1162/jocn_a_00727 Nairne, J. S., & Neath, I. (2001). Long-term memory span. Behavioral and Brain Sciences, 24(1), 134-135. https://doi.org/10.1017/S0140525X01433929 Nako, R., Wu, R., & Eimer, M. (2014a). Rapid guidance of visual search by object categories. Journal of Experimental Psychology: Human Perception and Performance, 40(1), 50-60. https://doi.org/10.1037/a0033228 Nako, R., Wu, R., Smith, T. J., & Eimer, M. (2014b). Item and category-based attentional control during search for real-world objects: Can you find the pants among the pans? Journal of Experimental Psychology: Human Perception and Performance, 40(4), 1283-1288. https://doi.org/10.1037/a0036885 Nobre, A., Griffin, I., & Rao, A. (2008). Spatial attention can bias search in visual short-term memory. Frontiers in Human Neuroscience, 2, 4. https://doi.org/10.3389/neuro.09.004.2007 Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(3), 411-421. https://doi.org/10.1037/0278-7393.28.3.411 Oberauer, K. (2009). Design for a working memory. In B. H. Ross (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 51, pp. 45-100). Elsevier Academic Press. https://doi.org/10.1016/S0079-7421(09)51002-X Oberauer, K. (2019). Working Memory and Attention - A Conceptual Analysis and Review. Journal of Cognition, 2(1), 36. https://doi.org/10.5334/joc.58 Oberauer, K., & Bialkova, S. (2011). Serial and parallel processes in working memory after practice. Journal of Experimental Psychology: Human Perception and Performance, 37(2), 606-614. https://doi.org/10.1037/a0020986 Oberauer, K., & Hein, L. (2012). Attention to information in working memory. Current Directions in Psychological Science, 21(3), 164-169. https://doi.org/10.1177/0963721412444727 Oberauer, K., Lewandowsky, S., Farrell, S., Jarrold, C., & Greaves, M. (2012). Modeling working memory: An interference model of complex span. Psychonomic Bulletin & Review, 19(5), 779-819. https://doi.org/10.3758/s13423-012-0272-4 Oberauer, K., & Lin, H.-Y. (2017). An interference model of visual working memory. Psychological Review, 124(1), 21-59. https://doi.org/10.1037/rev0000044 Olivers, C. N. L. (2009). What drives memory-driven attentional capture? The effects of memory type, display type, and search type. Journal of Experimental Psychology: Human Perception and Performance, 35(5), 1275-1291. https://doi.org/10.1037/a0013896 Olivers, C. N. L., & Eimer, M. (2011). On the difference between working memory and attentional set. Neuropsychologia, 49(6), 1553-1558. https://doi.org/10.1016/j.neuropsychologia.2010.11.033 Olivers, C. N. L., Meijer, F., & Theeuwes, J. (2006). Feature-based memory-driven attentional capture: Visual working memory content affects visual attention. Journal of Experimental Psychology: Human Perception and Performance, 32(5), 1243-1265. https://doi.org/10.1037/0096-1523.32.5.1243 Olivers, C. N. L., Peters, J., Houtkamp, R., & Roelfsema, P. R. (2011). Different states in visual working memory: When it guides attention and when it does not. Trends in Cognitive Sciences, 15(7), 327-334. https://doi.org/10.1016/j.tics.2011.05.004 Ort, E., Fahrenfort, J. J., & Olivers, C. N. L. (2017). Lack of free choice reveals the cost of having to search for more than one object. Psychological Science, 28(8), 1137-1147. https://doi.org/10.1177/0956797617705667 Ort, E., Fahrenfort, J. J., & Olivers, C. N. L. (2018). Lack of free choice reveals the cost of multiple-target search within and across feature dimensions. Attention, Perception, & Psychophysics, 80(8), 1904-1917. https://doi.org/10.3758/s13414-018-1579-7 Ort, E., & Olivers, C. N. L. (2020). The capacity of multiple-target search. Visual Cognition, 28(5-8), 330-355. https://doi.org/10.1080/13506285.2020.1772430 Peters, J. C., Goebel, R., & Roelfsema, P. R. (2008). Remembered but unused: The accessory items in working memory that do not guide attention. Journal of Cognitive Neuroscience, 21(6), 1081-1091. https://doi.org/10.1162/jocn.2009.21083 Poch, C., Valdivia, M., Capilla, A., Hinojosa, J. A., & Campo, P. (2018). Suppression of no-longer relevant information in working memory: An alpha-power related mechanism? Biological Psychology, 135, 112-116. https://doi.org/10.1016/j.biopsycho.2018.03.009 Postle, B. R. (2006). Working memory as an emergent property of the mind and brain. Neuroscience, 139(1), 23-38. https://doi.org/10.1016/j.neuroscience.2005.06.005 Qi, S., Ding, C., & Li, H. (2014). Neural correlates of inefficient filtering of emotionally neutral distractors from working memory in trait anxiety. Cognitive, Affective, & Behavioral Neuroscience, 14(1), 253-265. https://doi.org/10.3758/s13415-013-0203-5 Rademaker, R. L., Tredway, C. H., & Tong, F. (2012). Introspective judgments predict the precision and likelihood of successful maintenance of visual working memory. Journal of Vision, 12(13), 21. https://doi.org/10.1167/12.13.21 Rajsic, J., Carlisle, N. B., & Woodman, G. F. (2020). What not to look for: Electrophysiological evidence that searchers prefer positive templates. Neuropsychologia, 140, 107376. https://doi.org/10.1016/j.neuropsychologia.2020.107376 Rajsic, J., Ouslis, N. E., Wilson, D. E., & Pratt, J. (2017). Looking sharp: Becoming a search template boosts precision and stability in visual working memory. Attention, Perception, & Psychophysics, 79(6), 1643-1651. https://doi.org/10.3758/s13414-017-1342-5 Rajsic, J., & Woodman, G. F. (2019). Do we remember templates better so that we can reject distractors better? Attention, Perception, & Psychophysics, 82(1), 269-279. https://doi.org/10.3758/s13414-019-01721-8 Reinhart, R. M. G., Carlisle, N. B., & Woodman, G. F. (2014). Visual working memory gives up attentional control early in learning: Ruling out interhemispheric cancellation. Psychophysiology, 51(8), 800-804. https://doi.org/10.1111/psyp.12217 Reinhart, R. M. G., McClenahan, L. J., & Woodman, G. F. (2016). Attention’s accelerator. Psychological Science, 27(6), 790-798. https://doi.org/10.1177/0956797616636416 Reinhart, R. M. G., & Woodman, G. F. (2014). High stakes trigger the use of multiple memories to enhance the control of attention. Cerebral Cortex, 24(8), 2022-2035. https://doi.org/10.1093/cercor/bht057 Reinhart, R. M. G., & Woodman, G. F. (2015). Enhancing long-term memory with stimulation tunes visual attention in one trial. Proceedings of the National Academy of Sciences of the United States of America, 112(2), 625-630. https://doi.org/10.1073/pnas.1417259112 Rerko, L., & Oberauer, K. (2013). Focused, unfocused, and defocused information in working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(4), 1075-1096. https://doi.org/10.1037/a0031172 Rerko, L., Souza, A. S., & Oberauer, K. (2014). Retro-cue benefits in working memory without sustained focal attention. Memory & Cognition, 42(5), 712-728. https://doi.org/10.3758/s13421-013-0392-8 Roper, Z. J. J., & Vecera, S. P. (2012). Searching for two things at once: Establishment of multiple attentional control settings on a trial-by-trial basis. Psychonomic Bulletin & Review, 19(6), 1114-1121. https://doi.org/10.3758/s13423-012-0297-8 Rosen, V. M., & Engle, R. W. (1997). The role of working memory capacity in retrieval. Journal of Experimental Psychology: General, 126(3), 211-227. https://doi.org/10.1037/0096-3445.126.3.211 Sala, J. B., & Courtney, S. M. (2009). Flexible working memory representation of the relationship between an object and its location as revealed by interactions with attention. Attention, Perception, & Psychophysics, 71(7), 1525-1533. https://doi.org/10.3758/APP.71.7.1525 Salahub, C., Lockhart, H. A., Dube, B., Al-Aidroos, N., & Emrich, S. M. (2019). Electrophysiological correlates of the flexible allocation of visual working memory resources. Scientific Reports, 9(1), 19428. https://doi.org/10.1038/s41598-019-55948-4 Schmidt, B. K., Vogel, E. K., Woodman, G. F., & Luck, S. J. (2002). Voluntary and automatic attentional control of visual working memory. Perception & Psychophysics, 64(5), 754-763. https://doi.org/10.3758/BF03194742 Schmidt, J., & Zelinsky, G. J. (2009). Search guidance is proportional to the categorical specificity of a target cue. The Quarterly Journal of Experimental Psychology, 62(10), 1904-1914. https://doi.org/10.1080/17470210902853530 Schmidt, J., & Zelinsky, G. J. (2017). Adding details to the attentional template offsets search difficulty: Evidence from contralateral delay activity. Journal of Experimental Psychology: Human Perception and Performance, 43(3), 429-437. https://doi.org/10.1037/xhp0000367 Schneider, D., Göddertz, A., Haase, H., Hickey, C., & Wascher, E. (2019). Hemispheric asymmetries in EEG alpha oscillations indicate active inhibition during attentional orienting within working memory. Behavioural Brain Research, 359, 38-46. https://doi.org/10.1016/j.bbr.2018.10.020 Schneider, D., Mertes, C., & Wascher, E. (2015). On the fate of non-cued mental representations in visuo-spatial working memory: Evidence by a retro-cuing paradigm. Behavioural Brain Research, 293, 114-124. https://doi.org/10.1016/j.bbr.2015.07.034 Schneider, D., Mertes, C., & Wascher, E. (2016). The time course of visuo-spatial working memory updating revealed by a retro-cuing paradigm. Scientific Reports, 6(1), 21442. https://doi.org/10.1038/srep21442 Schneider, W. X. (2013). Selective visual processing across competition episodes: A theory of task-driven visual attention and working memory. Philosophical Transactions of the Royal Society of London: Series B, Biological Sciences, 368(1628), 20130060. https://doi.org/10.1098/rstb.2013.0060 Schurgin, M. W. (2018). Visual memory, the long and the short of it: A review of visual working memory and long-term memory. Attention, Perception, & Psychophysics, 80(5), 1035-1056. https://doi.org/10.3758/s13414-018-1522-y Sligte, I. G., Scholte, H. S., & Lamme, V. A. F. (2008). Are there multiple visual short-term memory stores? PLoS One, 3(2), e1699. https://doi.org/10.1371/journal.pone.0001699 Soto, D., Heinke, D., Humphreys, G. W., & Blanco, M. J. (2005). Early, involuntary top-down guidance of attention from working memory. Journal of Experimental Psychology: Human Perception and Performance, 31(2), 248-261. https://doi.org/10.1037/0096-1523.31.2.248 Soto, D., Hodsoll, J., Rotshtein, P., & Humphreys, G. W. (2008). Automatic guidance of attention from working memory. Trends in Cognitive Sciences, 12(9), 342-348. https://doi.org/10.1016/j.tics.2008.05.007 Soto, D., & Humphreys, G. W. (2009). Automatic selection of irrelevant object features through working memory: Evidence for top-down attentional capture. Experimental Psychology, 56(3), 165-172. https://doi.org/10.1027/1618-3169.56.3.165 Souza, A. S., & Oberauer, K. (2016). In search of the focus of attention in working memory: 13 years of the retro-cue effect. Attention, Perception, & Psychophysics, 78(7), 1839-1860. https://doi.org/10.3758/s13414-016-1108-5 Souza, A. S., Rerko, L., & Oberauer, K. (2015). Refreshing memory traces: Thinking of an item improves retrieval from visual working memory. Annals of the New York Academy of Sciences, 1339(1), 20-31. https://doi.org/10.1111/nyas.12603 Souza, A. S., Rerko, L., & Oberauer, K. (2016). Getting more from visual working memory: Retro-cues enhance retrieval and protect from visual interference. Journal of Experimental Psychology: Human Perception and Performance, 42(6), 890-910. https://doi.org/10.1037/xhp0000192 Stroud, M. J., Menneer, T., Cave, K. R., Donnelly, N., & Rayner, K. (2011). Search for multiple targets of different colours: Misguided eye movements reveal a reduction of colour selectivity. Applied Cognitive Psychology, 25(6), 971-982. https://doi.org/10.1002/acp.1790 Tabi, Y. A., Husain, M., & Manohar, S. G. (2019). Recall cues interfere with retrieval from visuospatial working memory. British Journal of Psychology, 110(2), 288-305. https://doi.org/10.1111/bjop.12374 Tas, A. C., Luck, S. J., & Hollingworth, A. (2016). The relationship between visual attention and visual working memory encoding: A dissociation between covert and overt orienting. Journal of Experimental Psychology: Human Perception and Performance, 42(8), 1121-1138. https://doi.org/10.1037/xhp0000212 Theeuwes, J. (1991). Cross-dimensional perceptual selectivity. Perception & Psychophysics, 50(2), 184-193. https://doi.org/10.3758/BF03212219 Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & Psychophysics, 51(6), 599-606. https://doi.org/10.3758/BF03211656 Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97-136. https://doi.org/10.1016/0010-0285(80)90005-5 Unsworth, N., Fukuda, K., Awh, E., & Vogel, E. K. (2014). Working memory and fluid intelligence: Capacity, attention control, and secondary memory retrieval. Cognitive Psychology, 71, 1-26. https://doi.org/10.1016/j.cogpsych.2014.01.003 van den Berg, R., Awh, E., & Ma, W. J. (2014). Factorial comparison of working memory models. Psychological Review, 121(1), 124-149. https://doi.org/10.1037/a0035234 van den Berg, R., Shin, H., Chou, W.-C., George, R., & Ma, W. J. (2012). Variability in encoding precision accounts for visual short-term memory limitations. Proceedings of the National Academy of Sciences of the United States of America, 109(22), 8780-8785. https://doi.org/10.1073/pnas.1117465109 van Ede, F. (2018). Mnemonic and attentional roles for states of attenuated alpha oscillations in perceptual working memory: A review. European Journal of Neuroscience, 48(7), 2509-2515. https://doi.org/10.1111/ejn.13759 van Loon, A. M., Olmos-Solis, K., & Olivers, C. N. L. (2017). Subtle eye movement metrics reveal task-relevant representations prior to visual search. Journal of Vision, 17(6), 13. https://doi.org/10.1167/17.6.13 van Moorselaar, D., Theeuwes, J., & Olivers, C. N. L. (2014). In competition for the attentional template: Can multiple items within visual working memory guide attention? Journal of Experimental Psychology: Human Perception and Performance, 40(4), 1450-1464. https://doi.org/10.1037/a0036229 Vandenbroucke, A. R. E., Sligte, I. G., & Lamme, V. A. F. (2011). Manipulations of attention dissociate fragile visual short-term memory from visual working memory. Neuropsychologia, 49(6), 1559-1568. https://doi.org/10.1016/j.neuropsychologia.2010.12.044 Vickery, T. J., King, L.-W., & Jiang, Y. (2005). Setting up the target template in visual search. Journal of Vision, 5(1), 8. https://doi.org/10.1167/5.1.8 Vissers, M. E., van Driel, J., & Slagter, H. A. (2016). Proactive, but not reactive, distractor filtering relies on local modulation of alpha oscillatory activity. Journal of Cognitive Neuroscience, 28(12), 1964-1979. https://doi.org/10.1162/jocn_a_01017 Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984), 748-751. https://doi.org/10.1038/nature02447 Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067), 500-503. https://doi.org/10.1038/nature04171 Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 27(1), 92-114. https://doi.org/10.1037/0096-1523.27.1.92 Wilken, P., & Ma, W. J. (2004). A detection theory account of change detection. Journal of Vision, 4(12), 11. https://doi.org/10.1167/4.12.11 Williams, R. S., Pratt, J., & Ferber, S. (2020). Directed avoidance and its effect on visual working memory. Cognition, 201, 104277. https://doi.org/10.1016/j.cognition.2020.104277 Wolfe, J. M. (1994). Guided Search 2.0: A revised model of visual search. Psychonomic Bulletin & Review, 1(2), 202-238. https://doi.org/10.3758/BF03200774 Wolfe, J. M. (2007). Guided Search 4.0: Current progress with a model of visual search. In W. D. Gray (Ed.), Integrated models of cognitive systems. (pp. 99-119). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195189193.003.0008 Wolfe, J. M. (2020). Visual search: How do we find what we are looking for? Annual Review of Vision Science, 6(1), 1-24. https://doi.org/10.1146/annurev-vision-091718-015048 Wolfe, J. M., Horowitz, T. S., Kenner, N., Hyle, M., & Vasan, N. (2004). How fast can you change your mind? The speed of top-down guidance in visual search. Vision Research, 44(12), 1411-1426. https://doi.org/10.1016/j.visres.2003.11.024 Wolfe, J. M., & Van Wert, M. J. (2010). Varying target prevalence reveals two dissociable decision criteria in visual search. Current Biology, 20(2), 121-124. https://doi.org/10.1016/j.cub.2009.11.066 Woodman, G. F., & Arita, J. T. (2011). Direct electrophysiological measurement of attentional templates in visual working memory. Psychological Science, 22(2), 212-215. https://doi.org/10.1177/0956797610395395 Woodman, G. F., Carlisle, N. B., & Reinhart, R. M. G. (2013). Where do we store the memory representations that guide attention? Journal of Vision, 13(3), 1. https://doi.org/10.1167/13.3.1 Woodman, G. F., & Luck, S. J. (2007). Do the contents of visual working memory automatically influence attentional selection during visual search? Journal of Experimental Psychology: Human Perception and Performance, 33(2), 363-377. https://doi.org/10.1037/0096-1523.33.2.363 Woodman, G. F., Luck, S. J., & Schall, J. D. (2007). The role of working memory representations in the control of attention. Cerebral Cortex, 17(suppl_1), i118-i124. https://doi.org/10.1093/cercor/bhm065 Yang, H., & Zelinsky, G. J. (2009). Visual search is guided to categorically-defined targets. Vision Research, 49(16), 2095-2103. https://doi.org/10.1016/j.visres.2009.05.017 Zanto, T. P., & Gazzaley, A. (2009). Neural suppression of irrelevant information underlies optimal working memory performance. The Journal of Neuroscience, 29(10), 3059-3066. https://doi.org/10.1523/JNEUROSCI.4621-08.2009 Zhang, B., Liu, S., Doro, M., & Galfano, G. (2018). Attentional guidance from multiple working memory representations: Evidence from eye movements. Scientific Reports, 8(1), 13876. https://doi.org/10.1038/s41598-018-32144-4 Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453(7192), 233-235. https://doi.org/10.1038/nature06860 Zhou, C., Lorist, M. M., & Mathôt, S. (2020). Concurrent guidance of attention by multiple working memory items: Behavioral and computational evidence. Attention, Perception, & Psychophysics, 82(6), 2950-2962. https://doi.org/10.3758/s13414-020-02048-5 Zokaei, N., Gorgoraptis, N., Bahrami, B., Bays, P. M., & Husain, M. (2011). Precision of working memory for visual motion sequences and transparent motion surfaces. Journal of Vision, 11(14), 2. https://doi.org/10.1167/11.14.2 Zokaei, N., Ning, S., Manohar, S., Feredoes, E., & Husain, M. (2014). Flexibility of representational states in working memory. Frontiers in Human Neuroscience, 8, 853. https://doi.org/10.3389/fnhum.2014.00853