Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Hiệu ứng ức chế allelopathic và cơ chế của các axit phenolic đối với Microcystis aeruginosa
Tóm tắt
Các hợp chất allelochemicals là tác nhân thiết yếu trong việc kiểm soát sinh học các hiện tượng nở hoa có hại. Việc xác định các chất ức chế tảo hiệu quả và hiểu rõ cơ chế của chúng là rất quan trọng. Nghiên cứu này báo cáo về việc ức chế sự phát triển của Microcystis aeruginosa bởi 6 axit phenolic có nguồn gốc từ các chuyển hóa thứ cấp của thực vật. Hiệu ứng ức chế của các axit phenolic bị ảnh hưởng đáng kể bởi liều lượng tiếp xúc và loại axit phenolic. Axit caffeic cho thấy khả năng ức chế tảo hiệu quả nhất (96h-EC50 là 5,8 mg/L). Ngược lại, 5 đồng phân còn lại (axit cinamic, axit p-coumaric, axit 3-hydroxycinnamic, axit ferulic và axit isoferulic) cho thấy hiệu ứng ức chế yếu hoặc hiệu ứng thúc đẩy với liều lượng tiếp xúc từ 5–100 mg/L. Các bài kiểm tra về ROS và hàm lượng chlorophyll a kết hợp với phân tích metabolomics đã tiết lộ rằng axit caffeic có thể gây ra sự tích tụ ROS của M. aeruginosa. Chúng chủ yếu làm rối loạn chuyển hóa nucleotide, amino acid và fatty acid, dẫn đến sự giảm điều hòa của hầu hết các chuyển hóa, bao gồm cả độc tố microcystin LR và cyanopeptolin A, cũng như các tiền chất của một số terpenoid không mong muốn. Nó đã được gợi ý rằng axit caffeic là một tác nhân hiệu quả trong việc kiểm soát hiện tượng nở hoa của M. aeruginosa.
Từ khóa
#Microcystis aeruginosa #axit phenolic #ức chế tảo #cơ chế allelopathic #kiểm soát sinh họcTài liệu tham khảo
Adisakwattana S (2017) Cinnamic acid and its derivatives: mechanisms for prevention and management of diabetes and its complications. Nutrients 9:163. https://doi.org/10.3390/nu9020163
Canton M, Holguin F, Boeing W (2019) Alkaloid gramine to control algal invaders: algae inhibition and gramine persistence. Bioresour Technol Rep 7:100304. https://doi.org/10.1016/j.biteb.2019.100304
Chen W, Yu X, Wu Y, Tang J, Li S (2021a) The SESAME complex regulates cell senescence through the generation of acetyl-CoA. Nat Metab 3:983–1000. https://doi.org/10.1038/s42255-021-00412-9
Chen YD, Zhao C, Zhu XY, Zhu Y, Tian R-N (2021b) Multiple inhibitory effects of succinic acid on Microcystis aeruginosa: morphology, metabolomics, and gene expression. Environ Technol 43:3121–3130. https://doi.org/10.1080/09593330.2021.1916090
Chen L, Li J, Zhu Y, Guo L, Ji R, Miao Y, Guo L, Du H, Liu D (2022) Caffeic acid, an allelochemical in Artemisia argyi, inhibits weed growth via suppression of mitogen-activated protein kinase signaling pathway and the biosynthesis of gibberellin and phytoalexin. Front Plant Sci 12:802198. https://doi.org/10.3389/fpls.2021.802198
Dana B, Pga B (2020) Advances in biosynthesis, regulation, and metabolic engineering of plant specialized terpenoids. Plant Sci 294:110457–110469. https://doi.org/10.1016/j.plantsci.2020.110457
Declerck S, Vanderstukken M, Pals A, Muylaert K, De Meester L (2007) Plankton biodiversity along a gradient of productivity and its mediation by macrophytes. Ecology 88:2199–2210. https://doi.org/10.1890/07-0048.1
Effiong K, Hu J, Xu C, Tang T, Huang H, Zeng J, Xiao X (2020) Sustainable utilization of agricultural straw for harmful algal blooms control: a review. J Renewable Mater 8:461–483. https://doi.org/10.32604/jrm.2020.09111
Eladel H, Battah M, Dawa A, Abd-Elhay R, Anees D (2019) Correction to: effect of rice straw extracts on growth of two phytoplankton isolated from a fish pond. J Appl Phycol 31:3565–3565. https://doi.org/10.1007/s10811-019-01893-8
Gauthier L, Tison-Rosebery J, Morin S, Mazzella N (2020) Metabolome response to anthropogenic contamination on microalgae: a review. Metabolomics 16:7–20. https://doi.org/10.1007/s11306-019-1628-9
Gil CS, Duan S, Kim JH, Eom SH (2021) Allelopathic efficiency of plant extracts to control cyanobacteria in hydroponic culture. Agron J 11:2350. https://doi.org/10.3390/agronomy11112350
Gyimesi G, Hediger MA (2020) Sequence features of mitochondrial transporter protein families. Biomolecules 10:1611. https://doi.org/10.3390/biom10121611
Herrera N, Teresa Florez M, Pablo Velasquez J, Echeverri F (2019) Effect of phenyl-acyl compounds on the growth, morphology, and toxin production of Microcystis aeruginosa Kutzing. Water 11:236. https://doi.org/10.3390/w11020236
Hilt S, Ghobrial M, Gross E (2006) In situ allelopathic of myriophyllum verticillatum (Haloragaceae) against selected phytoplamkton species. J Phycol 42:1189–1198. https://doi.org/10.1111/j.1529-8817.2006.00286.x
Ho JC, Michalak AM, Pahlevan N (2019) Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 574:667–670. https://doi.org/10.1038/s41586-019-1648-7
Huang H, Xiao X, Lin F, Grossart H, Nie Z, Sun L, Xu C, Shi J (2016) Continuous-release beads of natural allelochemicals for the long-term control of cyanobacterial growth: preparation, release dynamics and inhibitory effects. Water Res 95:113–123. https://doi.org/10.1016/j.watres.2016.02.058
Iwanaga A, Kusano G, Warashina T, Miyase T (2010) Hyaluronidase inhibitors from “Cimicifugae Rhizoma” (a mixture of the rhizomes of Cimicifuga dahurica and C. heracleifolia). J Nat Prod 73:573–578. https://doi.org/10.1021/np900675n
Jin P, Wang H, Liu W, Zhang S, Lin C, Zheng F, Miao W (2017) Bactericidal metabolites from Phellinus noxius HN-1 against Microcystis aeruginosa. Sci Rep 7:3132. https://doi.org/10.1038/s41598-017-03440-2
Jin PF, Wang HN, Huang WK, Liu WB, Fan YM, Miao WG (2018) The allelopathic effect and safety evaluation of 3,4-dihydroxybenzalacetone on Microcystis aeruginosa. Pestic Biochem Physiol 147:145–152. https://doi.org/10.1016/j.pestbp.2017.08.011
Jones MR, Pinto E, Torres MA, Drr F, Janssen ML (2021) CyanoMetDB, a comprehensive public database of secondary metabolites from cyanobacteria. Water Res 196:117017. https://doi.org/10.1016/j.watres.2021.117017
Kaya K, Liu Y, Shen Y, Xiao B, Sano T (2005) Selective control of toxic Microcystis water blooms using lysine and malonic acid: an enclosure experiment. Environ Toxicol 20:170–178. https://doi.org/10.1002/tox.20092
Kong CH, Xuan TD, Khanh TD, Tran HD, Trung NT (2019) Allelochemicals and signaling chemicals in plants. Molecules 24:2737. https://doi.org/10.3390/molecules24152737
Kz A, Rp A, Zhang L, Tz A, Jf C (2020) Interspecific competition between Microcystis aeruginosa and Pseudanadaena and their production of T&O compounds. Chemosphere 252:126509–126520. https://doi.org/10.1016/j.chemosphere.2020.126509
Lanciotti R, Guerzoni ME, Cocconcelli PS (2001) Alteration in cellular fatty acid composition as a response to salt, acid, oxidative and thermal stresses in Lactobacillus helveticus. Microbiology 147:2255–2264. https://doi.org/10.1099/00221287-147-8-2255
Laue P, Bahrs H, Chakrabarti S, Steinberg CEW (2014) Natural xenobiotics to prevent cyanobacterial and algal growth in freshwater: contrasting efficacy of tannic acid, gallic acid, and gramine. Chemosphere 104:212–220. https://doi.org/10.1016/j.chemosphere.2013.11.029
Lenz KA, Miller TR, Ma H (2018) Anabaenopeptins and cyanopeptolins induce systemic toxicity effects in a model organism the nematode Caenorhabditis elegans. Chemosphere 214:60–69. https://doi.org/10.1016/j.chemosphere.2018.09.076
Li L, Chen F, Zhao RF (2016) Allelopathic effect of soaking Carex cinerascens in poyang lake on Microcystis aeruginosa. Environ Sci Technol (China) 39:1–5
Li B, Yin Y, Kang L, Feng L, Zhang L (2021) A review: application of allelochemicals in water ecological restoration——algal inhibition. Chemosphere 267:128869. https://doi.org/10.1016/j.chemosphere.2020.128869
Liu G, Zhang M, Yujian FX, Qian H (2021a) The effects of low concentrations of silver nanoparticles on wheat growth, seed quality, and soil microbial communities. Environ Sci Technol 54:15996–16005. https://doi.org/10.1007/s11270-017-3523-1
Liu J, Chang Y, Sun L, Du F, Cui J, Liu X, Li N, Wang W, Li J, Yao D (2021b) Abundant allelochemicals and the inhibitory mechanism of the phenolic acids in water dropwort for the control of Microcystis aeruginosa blooms. Plants (Basel) 10(12):2653. https://doi.org/10.3390/plants10122653
Lu Z, Zhang Y, Gao Y, Liu B, Sun X, He F, Zhou Q, Wu Z (2016) Effects of pyrogallic acid on Microcystis aeruginosa: oxidative stress related toxicity. Ecotoxicol Environ 132:413–419. https://doi.org/10.1016/j.ecoenv.2016.06.039
Lv M, Yuan M, Wang Y, Tang X, Zhao Y (2021) Allelopathic effects of Ulva linza on marine phytoplankton and identification of the allelochemicals. Environ Sci Pollut Res 28:1–10. https://doi.org/10.1007/s11356-021-13734-8
Lw A, Kw B, Zk A, Ac C, Abf D, Aul B, Al A (2021) The current state of knowledge on taxonomy, modulating factors, ecological roles, and mode of action of phytoplankton allelochemicals. Sci Total Environ 773:145681. https://doi.org/10.1016/j.scitotenv.2021.145681
Ma H, Chen Y, Chen J, Zhang Y, Zhang T, He H (2020) Comparison of allelopathic effects of two typical invasive plants: Mikania micrantha and Ipomoea cairica in Hainan island. Sci Rep 10:11332. https://doi.org/10.1038/s41598-020-68234-5
Mancuso C, Santangelo R (2014) Ferulic acid: pharmacological and toxicological aspects. Food Chem Toxicol 65:185–195. https://doi.org/10.1016/j.fct.2013.12.024
Martin C, Oberer L, Ino T, König WA, Busch M, Weckesser J (1993) Cyanopeptolins, new depsipeptides from the cyanobacterium Microcystis sp. PCC 7806. J Antibiot 46:1550–1556. https://doi.org/10.7164/antibiotics.46.1550
Naca B, Ik C, Cjp C, Gkd B (2021) Prevalence of actinobacteria in the production of 2-methylisoborneol and geosmin, over cyanobacteria in a temperate eutrophic reservoir. Chem Eng J 9:100226. https://doi.org/10.1016/j.ceja.2021.100226
Nakai S, Inoue Y, Hosomi M (2001) Algal growth inhibition effects and inducement modes by plant-producing phenols. Water Res 35:1855–1859. https://doi.org/10.1016/s0043-1354(00)00444-9
Nakano K, Rischke M, Sato S, Märkl H (1997) Influence of acetic acid on the growth of Escherichia coli K12 during high-cell-density cultivation in a dialysis reactor. Appl Microbiol Biotechnol 48:597–601
Neumann AC, Melnik S, Niessner R, Stoeger E, Knopp D (2018) Microcystin-LR enrichment from freshwater by a recombinant plant-derived antibody using sol-gel-glass immunoextraction. JSAC 35:207–214. https://doi.org/10.2116/analsci.18P384
Ni LX, Li DY, Rong SY, Su LL, Zhou W, Wang PF, Wang C, Li SY, Acharya K (2017) Characterization of extracellular polymeric substance (EPS) fractions produced by Microcystis aeruginosa under the stress of linoleic acid sustained release microspheres. Environ Sci Pollut Res 24:21091–21102. https://doi.org/10.1007/s11356-017-9540-1
Ni L, Rong S, Gu G, Hu L, Wang P, Li D, Yue F, Wang N, Wu H, Li S (2018) Inhibitory effect and mechanism of linoleic acid sustained-release microspheres on Microcystis aeruginosa at different growth phases. Chemosphere 212:654–661. https://doi.org/10.1016/j.chemosphere.2018.08.045
Pei Y, Liu L, Hilt S, Xu R, Wang B, Li C, Chang X (2018) Root exudated algicide of Eichhornia crassipes enhances allelopathic effects of cyanobacteria Microcystis aeruginosa on green algae. Hydrobiologia 823:67–77. https://doi.org/10.1007/s10750-018-3696-7
Pezzolesi L, Accoroni S, Rindi F, Samorì C, Pistocchi R (2021) Survey of the allelopathic potential of Mediterranean macroalgae: production of long-chain polyunsaturated aldehydes (PUAs). Phytochemistry 189:112826. https://doi.org/10.1016/j.phytochem.2021.112826
Pradhan SN, Das A, Meena R, Nanda RK, Rajamani P (2016) Biofluid metabotyping of occupationally exposed subjects to air pollution demonstrates high oxidative stress and deregulated amino acid metabolism. Sci Rep 6:35972–35983. https://doi.org/10.1038/srep35972
Qian L, Qi S, Cao F, Zhang J, Zhao F, Li C, Wang C (2018) Toxic effects of boscalid on the growth, photosynthesis, antioxidant system and metabolism of Chlorella vulgaris. Environ Pollut 242:171–181. https://doi.org/10.1016/j.envpol.2018.06.055
Santos-Sánchez NF, Salas-Coronado R, Hernández-Carlos B, Villanueva-Cañongo C (2019) Shikimic acid pathway in biosynthesis of phenolic compounds. https://doi.org/10.5772/intechopen.83815
Scavo A, Mauromicale G (2021) Crop allelopathy for sustainable weed management in agroecosystems: knowing the present with a view to the future. Agron J 11:2104–2127. https://doi.org/10.3390/agronomy11112104
Schaedler TA, Faust B, Shintre CA, Carpenter EP, Balk J (2015) Structures and functions of mitochondrial ABC transporters. Biochem Soc Trans 43:943–951. https://doi.org/10.1042/BST20150118
Steinmetz Z, Kurtz MP, Zubrod JP, Meyer AH, Elsner M, Schaumann GE (2019) Biodegradation and photooxidation of phenolic compounds in soil-A compound-specific stable isotope approach. Chemosphere 230:210–218. https://doi.org/10.1016/j.chemosphere.2019.05.030
Tang CS, Young CC (1982) Collection and identification of allelopathic compounds from the undisturbed root system of bigalta limpograss (Hemarthria altissima). Plant Physiol 69:155–160. https://doi.org/10.1104/pp.69.1.155
Techer D, Milla S, Fontaine P, Viot S, Thomas M (2015) Acute toxicity and sublethal effects of gallic and pelargonic acids on the zebrafish Danio rerio. Environ Sci Pollut Res Int 22:5020–5029. https://doi.org/10.1007/s11356-015-4098-2
Usenko O, Guseynova V, Sakevich A (2008) Peculiarities of the influence of polyphenols on algae under conditions of changes in pH of the environment. Hydrobiol J 44:37–44. https://doi.org/10.1615/HYDROBJ.V44.I5.40
Vanderstukken M, Declerck S, Decaestecker E, Muylaert K (2014) Long-term allelopathic control of phytoplankton by the submerged macrophyte Elodea nuttallii. Freshwater Biol 59:930–941. https://doi.org/10.1111/fwb.12316
Vermaas JV, Beckham GT, Crowley MF (2017) Membrane permeability of fatty acyl compounds studied via molecular simulation. J Phys Chem B 121(50):11311–11324. https://doi.org/10.1021/acs.jpcb.7b08233
Wang F, Zhao W, Chen J, Zhou Y (2022) Allelopathic inhibitory effect on the growth of Microcystis aeruginosa by improved ultrasonic-cellulase extract of Vallisneria. Chemosphere 298:134245. https://doi.org/10.1016/j.chemosphere.2022.134245
Wang R, Hua M, Yu Y, Zhang M, Xian Q, Yin D (2016) Evaluating the effects of allelochemical ferulic acid on Microcystis aeruginosa by pulse-amplitude-modulated (PAM) fluorometry and flow cytometry. Chemosphere 147:264–271. https://doi.org/10.1016/j.chemosphere.2015.12.109
Wang Z, Akbar S, Sun Y, Gu L, Yang Z (2021) Cyanobacterial dominance and succession: factors, mechanisms, predictions, and managements. J Environ Manag 297:113281. https://doi.org/10.1016/j.jenvman.2021.113281
Watson SB (2003) Cyanobacterial and eukaryotic algal odour compounds: signals or by-products? A review of their biological activity. Phycologia 42:332–350. https://doi.org/10.2216/i0031-8884-42-4-332.1
Wei P, Ma H, Fu H, Xu Z, Qu X (2022) Efficient inhibition of cyanobacteria M. aeruginosa growth using commercial food-grade fumaric acid. Chemosphere 301:134659. https://doi.org/10.1016/j.chemosphere.2022.134659
Welch I, Barrett P, Gibson M, Ridge I (1990) Barley straw as an inhibitor of algal growth I: studies in the Chesterfield Canal. J Appl Phycol 2:231–239. https://doi.org/10.1007/BF02179780
Organization WH (1998) Cyanobacterial toxins: microcystin-LR. Guidelines for Drinking-Water Quality
Xu C, Yu S, Hu J, Effiong K, Ge Z, Tang T, Xiao X (2022) Programmed cell death process in freshwater Microcystis aeruginosa and marine Phaeocystis globosa induced by a plant derived allelochemical. Sci Total Environ 838:156055–156067. https://doi.org/10.1016/j.scitotenv.2022.156055
Yu S, Li C, Xu C, Effiong K, Xiao X (2019) Understanding the inhibitory mechanism of antialgal allelochemical flavonoids from genetic variations: photosynthesis, toxin synthesis and nutrient utility. Ecotoxicol Environ 177:18–24. https://doi.org/10.1016/j.ecoenv.2019.03.097
Yuan R, Li Y, Li J, Ji S, Wang S, Kong F (2020) The allelopathic effects of aqueous extracts from Spartina alterniflora on controlling the Microcystis aeruginosa blooms. Sci Total Environ 712:136332. https://doi.org/10.1016/j.scitotenv.2019.136332
Zhang BH (2015) An antialgal compound produced by Streptomyces jiujiangensis JXJ 0074T. Appl Microbiol Biotechnol 99:7673–7683. https://doi.org/10.1007/s00253-015-6584-3
Zhang C, Ling F, Yi YL, Zhang HY, Wang GX (2014) Algicidal activity and potential mechanisms of ginkgolic acids isolated from Ginkgo biloba exocarp on Microcystis aeruginosa. J Appl Phycol 26:323–332. https://doi.org/10.1007/s10811-013-0057-9
Zhang W, Jeppesen E, Wang M, Xu X, Wang L (2017) Allelopathic effect boosts Chrysosporum ovalisporum dominance in summer at the expense of Microcystis panniformis in a shallow coastal water body. Environ Sci Pollut Res 24:4666–4675. https://doi.org/10.1007/s11356-016-8149-0
Zhang H, Meng G, Mao F, Li W, He Y, Gin YH, Ong CN (2019) Use of an integrated metabolomics platform for mechanistic investigations of three commonly used algaecides on cyanobacterium, Microcystis aeruginosa. J Hazard Mater 367:120–127. https://doi.org/10.1016/j.jhazmat.2018.12.069
Zhang Z, Fan X, Peijnenburg W, Zhang M, Qian H (2021) Alteration of dominant cyanobacteria in different bloom periods caused by abiotic factors and species interactions. J Environ Sci 99:1–9. https://doi.org/10.1016/j.jes.2020.06.001
Zhao Z, Moghadasian M (2008) Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: a review. Food Chem 109:691–702. https://doi.org/10.1016/j.foodchem.2008.02.039
Zhu J, Liu B, Wang J, Gao Y, Wu Z (2010) Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte (Myriophyllum spicatum) and its secretion. Aquat Toxicol 98:196–203. https://doi.org/10.1016/j.aquatox.2010.02.011
Zhu L, Zuo J, Song L, Gan N (2016) Microcystin-degrading bacteria affect mcyD expression and microcystin synthesis in Microcystis spp. J Environ Sci 41:195–201. https://doi.org/10.1016/j.jes.2015.06.016
Zhu X, Dao G, Tao Y, Zhan X, Hu H (2021) A review on control of harmful algal blooms by plant-derived allelochemicals. J Hazard Mater 401:123403. https://doi.org/10.1016/j.jhazmat.2020.123403