All solid-state polymer electrolytes for high-performance lithium ion batteries

Energy Storage Materials - Tập 5 - Trang 139-164 - 2016
Liping Yue1, Jun Ma1, Jianjun Zhang1, Jingwen Zhao1, Shanmu Dong1, Zhihong Liu1, Guanglei Cui1, Liquan Chen2,1
1Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
2Key Laboratory for Renewable Energy, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, PR China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Armand, 2008, Building better batteries, Nature, 451, 652, 10.1038/451652a

Goodenough, 2011, Challenges for rechargeable batteries, J. Power Sources, 196, 6688, 10.1016/j.jpowsour.2010.11.074

Goodenough, 2010, Challenges for rechargeable Li batteries, Chem. Mater., 22, 587, 10.1021/cm901452z

Jeong, 2011, Prospective materials and applications for Li secondary batteries, Energy Environ. Sci., 4, 1986, 10.1039/c0ee00831a

Väyrynen, 2012, Lithium ion battery production, J. Chem. Thermodyn., 46, 80, 10.1016/j.jct.2011.09.005

Etacheri, 2011, Challenges in the development of advanced Li-ion batteries: a review, Energy Environ. Sci., 4, 3243, 10.1039/c1ee01598b

Li, 2012, Effect of sulfolane on the performance of lithium bis(oxalato)borate-based electrolytes for advanced lithium ion batteries, Electrochim. Acta, 65, 221, 10.1016/j.electacta.2012.01.052

Xiang, 2011, An inorganic membrane as a separator for lithium-ion battery, J. Power Sources, 196, 8651, 10.1016/j.jpowsour.2011.06.055

Huang, 2013, Lithium ion battery separators: development and performance characterization of a composite membrane, J. Membr. Sci., 425–426, 163, 10.1016/j.memsci.2012.09.027

Pistoia, 2014

Girishkumar, 2010, Lithium-air battery: promise and challenges, J. Phys. Chem. Lett., 1, 2193, 10.1021/jz1005384

Patil, 2008, Issue and challenges facing rechargeable thin film lithium batteries, Mater. Res. Bull., 43, 1913, 10.1016/j.materresbull.2007.08.031

Kim, 2004, Improvement in lithium cycling efficiency by using lithium powder anode, Electrochim. Acta, 50, 531, 10.1016/j.electacta.2003.12.071

Wakihara, 2012, Development of nonflammable lithium ion battery using a new all-solid polymer electrolyte, J. Solid State Electrochem., 16, 847, 10.1007/s10008-012-1643-5

Tarascon, 2001, Issues and challenges facing rechargeable lithium batteries, Nature, 414, 359, 10.1038/35104644

Goodenough, 2013, The Li-ion rechargeable battery: a perspective, J. Am. Chem. Soc., 135, 1167, 10.1021/ja3091438

Tarascon, 2010, Key challenges in future Li-battery research, Philos. Trans. R. Soc. A, 368, 3227, 10.1098/rsta.2010.0112

Scrosati, 2010, Lithium batteries: status, prospects and future, J. Power Sources, 195, 2419, 10.1016/j.jpowsour.2009.11.048

Balakrishnan, 2006, Safety mechanisms in lithium-ion batteries, J. Power Sources, 155, 401, 10.1016/j.jpowsour.2005.12.002

Wang, 2012, Thermal runaway caused fire and explosion of lithium ion battery, J. Power Sources, 208, 210, 10.1016/j.jpowsour.2012.02.038

Park, 2008, The effect of internal resistance on dendritic growth on lithium metal electrodes in the lithium secondary batteries, J. Power Sources, 178, 765, 10.1016/j.jpowsour.2007.12.081

Liu, 2004, In situ preparation of poly(ethylene oxide)-SiO2 composite polymer electrolytes, J. Power Sources, 129, 303, 10.1016/j.jpowsour.2003.11.026

Choi, 2003, Interfacial enhancement between lithium electrode and polymer electrolytes, J. Power Sources, 119–121, 610, 10.1016/S0378-7753(03)00305-7

Kim, 2015, A review of lithium and non-lithium based solid state batteries, J. Power Sources, 282, 299, 10.1016/j.jpowsour.2015.02.054

Amiki, 2013, Electrochemical properties of an all-solid-state lithium-ion battery with an in-situ formed electrode material grown from a lithium conductive glass ceramics sheet, J. Power Sources, 241, 583, 10.1016/j.jpowsour.2013.05.006

Ahn, 2014, Electrochemical properties of Li7La3Zr2O12-based solid state battery, J. Power Sources, 272, 554, 10.1016/j.jpowsour.2014.08.110

Kobayashi, 2010, Electrochemical properties of Li symmetric solid-state cell with NASICON-type solid electrolyte and electrodes, Electrochem. Commun., 12, 894, 10.1016/j.elecom.2010.04.014

Kotobuki, 2013, Fabrication of all-solid-state battery using Li5La3Ta2O12 ceramic electrolyte, Ceram. Int., 39, 6481, 10.1016/j.ceramint.2013.01.079

Knauth, 2009, Inorganic solid Li ion conductors: an overview, Solid State Ion., 180, 911, 10.1016/j.ssi.2009.03.022

Hallinan, 2013, Polymer electrolytes, Annu. Rev. Mater. Res., 43, 503, 10.1146/annurev-matsci-071312-121705

Ahmad, 2009, Polymer electrolytes: characteristics and peculiarities, Ionics, 15, 309, 10.1007/s11581-008-0309-x

Ibrahim, 2011, Effects of various LiPF6 salt concentrations on PEO-based solid polymer electrolytes, Ionics, 17, 399, 10.1007/s11581-011-0524-8

Meyer, 1998, Polymer electrolytes for lithium-ion batteries, Adv. Mater., 10, 439, 10.1002/(SICI)1521-4095(199804)10:6<439::AID-ADMA439>3.0.CO;2-I

Murata, 2000, An overview of the research and development of solid polymer electrolyte batteries, Electrochim. Acta, 45, 1501, 10.1016/S0013-4686(99)00365-5

Shim, 2014, Synthesis and properties of organic/inorganic hybrid branched-graft copolymers and their application to solid-state electrolytes for high-temperature lithium-ion batteries, Polym. Chem., 5, 3432, 10.1039/C4PY00123K

Fergus, 2010, Ceramic and polymeric solid electrolytes for lithium-ion batteries, J. Power Sources, 195, 4554, 10.1016/j.jpowsour.2010.01.076

Song, 1999, Review of gel-type polymer electrolytes for lithium-ion batteries, J. Power Sources, 77, 183, 10.1016/S0378-7753(98)00193-1

Ramesh, 2011, An investigation on PAN-PVC-LiTFSI based polymer electrolytes system, Solid State Ion., 192, 2, 10.1016/j.ssi.2010.05.045

Zhang, 2000, Novel network polymer electrolytes based on polysiloxane with internal plasticizer, Electrochim. Acta, 45, 2131, 10.1016/S0013-4686(99)00435-1

Wang, 2010, Enhancement of electrochemical properties of hot-pressed poly(ethylene oxide)-based nanocomposite polymer electrolyte films for all-solid-state lithium polymer batteries, Electrochim. Acta, 55, 1895, 10.1016/j.electacta.2009.11.003

Manuel Stephan, 2006, Review on composite polymer electrolytes for lithium batteries, Polymer, 47, 5952, 10.1016/j.polymer.2006.05.069

Capuano, 1991, Composite polymer electrolytes, J. Electrochem. Soc., 138, 1918, 10.1149/1.2085900

Quartarone, 1998, PEO-based composite polymer electrolytes, Solid State Ion., 110, 1, 10.1016/S0167-2738(98)00114-3

Acosta Luque, 1996, Characterisation of new polymer electrolytes based on polyethers and polyphosphazene blends, Solid State Ion., 91, 75, 10.1016/S0167-2738(96)00430-4

Fauteux, 1995, Lithium polymer electrolyte rechargeable battery, Electrochim. Acta, 40, 2185, 10.1016/0013-4686(95)00161-7

Brissot, 1999, Dendritic growth mechanisms in lithium/polymer cells, J. Power Sources, 81–82, 925, 10.1016/S0378-7753(98)00242-0

Monroe, 2005, The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces, J. Electrochem. Soc., 152, A396, 10.1149/1.1850854

Takeda, 2016, Lithium dendrite formation on a lithium metal anode from liquid, polymer and solid electrolytes, Electrochemistry, 84, 210, 10.5796/electrochemistry.84.210

Tanaka, 2001, Lithium ion conductivity in polyoxyethylenepolyethylenimine blends, Electrochim. Acta, 46, 1709, 10.1016/S0013-4686(00)00775-1

Yuan, 2005, PAN-PEO solid polymer electrolytes with high ionic conductivity, Mater. Chem. Phys., 89, 390, 10.1016/j.matchemphys.2004.09.032

Soo, 1999, Rubbery block copolymer electrolytes for solid-state rechargeable lithium batteries, J. Electrochem. Soc., 146, 32, 10.1149/1.1391560

Niitani, 2005, Characteristics of new-type solid polymer electrolyte controlling nano-structure, J. Power Sources, 146, 386, 10.1016/j.jpowsour.2005.03.102

Bouchet, 2013, Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries, Nat. Mater., 12, 452, 10.1038/nmat3602

Rolland, 2015, Single-ion diblock copolymers for solid-state polymer electrolytes, Polymer, 68, 344, 10.1016/j.polymer.2015.04.056

Watanabe, 1999, High ionic conductivity and electrode interface properties of polymer electrolytes based on high molecular weight branched polyether, J. Power Sources, 81–82, 786, 10.1016/S0378-7753(99)00250-5

Ikeda, 2000, Characterization of comb-shaped high molecular weight poly (oxyethylene) with tri(oxyethylene side chains for a polymer solid electrolyte, Electrochim. Acta, 45, 1167, 10.1016/S0013-4686(99)00377-1

Wen, 2000, Blend-based polymer electrolytes of poly(ethylene oxide) and hyperbranched poly[bis(triethylene glycol)benzoate] with terminal acetyl groups, Solid State Ion., 134, 281, 10.1016/S0167-2738(00)00707-4

Zhang, 2014, Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries, Sci. Rep., 4, 6272, 10.1038/srep06272

Armand, 1983, Polymer solid electrolytes-an overview, Solid State Ion., 9–10, 745, 10.1016/0167-2738(83)90083-8

Fenton, 1973, Complexes of alkali metal ions with poly(ethylene oxide), Polymer, 14, 589, 10.1016/0032-3861(73)90146-8

Croce, 2006, Advanced, lithium batteries based on high-performance composite polymer electrolytes, J. Power Sources, 162, 685, 10.1016/j.jpowsour.2006.07.038

Abraham, 1990, Li+-conductive solid polymer electrolytes with liquid-like conductivity, J. Electrochem. Soc., 137, 1657, 10.1149/1.2086749

Golodnitsky, 2015, Review-on order and disorder in polymer electrolytes, J. Electrochem. Soc., 162, A2551, 10.1149/2.0161514jes

Wright, 1998, Polymer electrolytes-the early days, Electrochim. Acta, 43, 1137, 10.1016/S0013-4686(97)10011-1

Arora, 2004, Battery separators, Chem. Rev., 104, 4419, 10.1021/cr020738u

Nishimoto, 1999, High ionic conductivity of polyether-based network polymer electrolytes with hyperbranched side chains, Macromolecules, 32, 1541, 10.1021/ma981436q

Fullerton-Shirey, 2009, Effect of LiClO4 on the structure and mobility of PEO-based solid polymer electrolytes, Macromolecules, 42, 2142, 10.1021/ma802502u

Bruce, 1993, Polymer electrolytes, J. Chem. Soc. Faraday Trans., 89, 3187, 10.1039/ft9938903187

Marzantowicz, 2007, Influence of crystalline complexes on electrical properties of PEO:LiTFSI electrolyte, Electrochim. Acta, 53, 1518, 10.1016/j.electacta.2007.03.032

Dias, 2000, Trends in polymer electrolytes for secondary lithium batteries, J. Power Sources, 88, 169, 10.1016/S0378-7753(99)00529-7

Niitani, 2005, Synthesis of Li+ ion conductive PEO-PSt block copolymer electrolyte with microphase separation structure, Electrochem. Solid-State Lett., 8, A385, 10.1149/1.1940491

Rosso, 2006, Dendrite short-circuit and fuse effect on Li/polymer/Li cells, Electrochim. Acta, 51, 5334, 10.1016/j.electacta.2006.02.004

Khurana, 2014, Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries, J. Am. Chem. Soc., 136, 7395, 10.1021/ja502133j

Porcarelli, 2016, Super soft all-ethylene oxide polymer electrolyte for safe all-solid lithium batteries, Sci. Rep., 6, 19892, 10.1038/srep19892

Huang, 1992, Studies on PAN-based lithium salt complex, Electrochim. Acta, 37, 1671, 10.1016/0013-4686(92)80135-9

Sadoway, 2004, Block and graft copolymer electrolytes for high-performance, solid-state, lithium batteries, J. Power Sources, 129, 1, 10.1016/j.jpowsour.2003.11.016

Rolland, 2014, Chemically anchored liquid-PEO based block copolymer electrolytes for solid-state lithium-ion batteries, J. Mater. Chem. A, 2, 11839, 10.1039/C4TA02327G

Itoh, 2002, Effect of branching in base polymer on ionic conductivity in hyperbranched polymer electrolytes, Solid State Ion., 150, 337, 10.1016/S0167-2738(02)00535-0

Ding, 2015, A polyborate coated cellulose composite separator for high performance lithium ion batteries, J. Electrochem. Soc., 162, A834, 10.1149/2.0261506jes

Elmér, 2006, Synthesis and characterization of poly(ethylene oxide-co-ethylene carbonate) macromonomers and their use in the preparation of crosslinked polymer electrolytes, J. Polym. Sci. Polym. Chem., 44, 2195, 10.1002/pola.21324

Silva, 2004, Characterization of solid polymer electrolytes based on poly(trimethylenecarbonate) and lithium tetrafluoroborate, Electrochim. Acta, 49, 1887, 10.1016/j.electacta.2003.12.017

Kwon, 2014, Preparation of organic/inorganic hybrid semi-interpenetrating network polymer electrolytes based on poly(ethylene oxide-co-ethylene carbonate) for all-solid-state lithium batteries at elevated temperatures, Polymer, 55, 2799, 10.1016/j.polymer.2014.04.051

Sun, 2014, Polycarbonate-based solid polymer electrolytes for Li-ion batteries, Solid State Ion., 262, 738, 10.1016/j.ssi.2013.08.014

Tominaga, 2014, Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles, Chem. Commun., 50, 4448, 10.1039/C3CC49588D

Okumura, 2014, Lithium ion conductive properties of aliphatic polycarbonate, Solid State Ion., 267, 68, 10.1016/j.ssi.2014.09.011

Mindemark, 2015, Copolymers of trimethylene carbonate and ε-caprolactone as electrolytes for lithium-ion batteries, Polymer, 63, 91, 10.1016/j.polymer.2015.02.052

Zhang, 2015, Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries, Adv. Energy Mater., 1501082, 10.1002/aenm.201501082

Lee, 2000, Ring-opening polymerization of ethylene carbonate and depolymerization of poly(ethylene oxide-co-ethylene carbonate), Macromolecules, 33, 1618, 10.1021/ma9914321

Wang, 2011, Some recent developments of polyhedral oligomeric silsesquioxane (POSS)-based polymeric materials, J. Mater. Chem., 21, 2775, 10.1039/C0JM02785E

Mang, 2000, Copolymerization of CO2 and 1,2-cyclohexene oxide using a CO2-soluble chromium porphyrin catalyst, Macromolecules, 33, 303, 10.1021/ma991162m

Zhang, 2006, Partial delamination of the organo-montmorillonite with surfactant containing hydroxyl groups in maleated poly(propylene carbonate), Polymer, 47, 8548, 10.1016/j.polymer.2006.09.041

Zhang, 2014, Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery, Sci. Rep., 4, 3935, 10.1038/srep03935

Zhang, 2013, Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator, ACS Appl. Mater. Interfaces, 5, 128, 10.1021/am302290n

Kang, 2005, A new polysiloxane based cross-linker for solid polymer electrolyte, J. Power Sources, 146, 391, 10.1016/j.jpowsour.2005.03.142

Zhang, 2003, Cross-linked network polymer electrolytes based on a polysiloxane backbone with oligo(oxyethylene) side chains: synthesis and conductivity, Macromolecules, 36, 9176, 10.1021/ma0349276

Grünebaum, 2014, Synthesis and electrochemistry of polymer based electrolytes for lithium batteries, Prog. Solid State Chem., 42, 85, 10.1016/j.progsolidstchem.2014.04.004

Polo Fonseca, 2002, Characterization of polymer electrolytes based on poly(dimethyl siloxane-co-ethylene oxide), J. Power Sources, 104, 85, 10.1016/S0378-7753(01)00902-8

Oh, 2003, New interpenetrating network type poly(siloxane-g-ethylene oxide) polymer electrolyte for lithium battery, J. Power Sources, 119–121, 442, 10.1016/S0378-7753(03)00187-3

Zhang, 2004, Ion conductive characteristics of cross-linked network polysiloxane-based solid polymer electrolytes, Solid State Ion., 170, 233, 10.1016/j.ssi.2004.04.007

Kang, 2003, Solid polymer electrolytes based on cross-linked polysiloxane-g-oligo(ethylene oxide): ionic conductivity and electrochemical properties, J. Power Sources, 119–121, 448, 10.1016/S0378-7753(03)00189-7

Lin, 2013, A wider temperature range polymer electrolyte for all-solid-state lithium ion batteries, RSC Adv., 3, 10722, 10.1039/c3ra40306h

Hooper, 2001, Highly conductive siloxane polymers, Macromolecules, 34, 931, 10.1021/ma0018446

Siska, 2001, Li+ conductivity of polysiloxane-trifluoromethylsulfonamide polyelectrolytes, Chem. Mater., 13, 4698, 10.1021/cm000420n

Wang, 2010, Solid polymer electrolytes of blends of polyurethane and polyether modified polysiloxane and their ionic conductivity, Polymer, 51, 2621, 10.1016/j.polymer.2010.04.038

Ha, 2011, A self-standing, UV-cured polymer networks-reinforced plastic crystal composite electrolyte for a lithium-ion battery, Electrochim. Acta, 57, 40, 10.1016/j.electacta.2011.03.101

Long, 2003, Fast ion conduction in molecular plastic crystals, Solid State Ion., 161, 105, 10.1016/S0167-2738(03)00208-X

Zhou, 2015, In situ synthesis of a hierarchical all-solid-state electrolyte based on nitrile materials for high-performance lithium-ion batteries, Adv. Energy Mater., 5, 1500353, 10.1002/aenm.201500353

Xu, 2014, Electrolytes and interphases in Li-ion batteries and beyond, Chem. Rev., 114, 11503, 10.1021/cr500003w

Croce, 1993, Lithium-7 NMR and ionic conductivity studies of gel electrolytes based on poly(acrylonitri1e), Chem. Mater., 5, 1268, 10.1021/cm00033a014

Derollez, 1990, Structure of succinonitrile in its plastic phase, J. Phys.: Condens. Matter, 2, 6893

Fan, 2006, Composite effects in poly(ethylene oxide)-succinonitrile based all-solid electrolytes, Electrochem. Commun., 8, 1753, 10.1016/j.elecom.2006.08.017

Fan, 2007, Succinonitrile as a versatile additive for polymer electrolytes, Adv. Funct. Mater., 17, 2800, 10.1002/adfm.200601070

Alarco, 2004, The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors, Nat. Mater., 3, 476, 10.1038/nmat1158

Yang, 2013, Electrical properties of composite polymer electrolytes based on PEO-SN-LiCF3SO3, Int. J. Electrochem. Sci., 8, 10163, 10.1016/S1452-3981(23)13102-6

Ha, 2012, UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries, Energy Environ. Sci., 5, 6491, 10.1039/c2ee03025j

Choi, 2014, Thin, deformable, and safety-reinforced plastic crystal polymer electrolytes for high-performance flexible lithium-ion batteries, Adv. Funct. Mater., 24, 44, 10.1002/adfm.201301345

Kim, 2014, A shape-deformable and thermally stable solid-state electrolyte based on a plastic crystal composite polymer electrolyte for flexible/safer lithium-ion batteries, J. Mater. Chem. A, 2, 10854, 10.1039/C4TA00494A

Meneghettia, 2004, Synthesis of polymer gel electrolyte with high molecular weight poly(methyl methacrylate)-clay nanocomposite, Electrochim. Acta, 49, 4923, 10.1016/j.electacta.2004.06.023

Kumar, 2004, From colloidal to composite electrolytes: properties, peculiarities, and possibilities, J. Power Sources, 135, 215, 10.1016/j.jpowsour.2004.04.038

Adebahr, 2003, Enhancement of ion dynamics in PMMA-based gels with addition of TiO2 nano-particles, Electrochim. Acta, 48, 2099, 10.1016/S0013-4686(03)00191-9

Appetecchi, 2000, PEO-carbon composite lithium polymer electrolyte, Electrochim. Acta, 45, 2139, 10.1016/S0013-4686(99)00437-5

Michael, 1997, Enhanced lithium ion transport in PEO-based solid polymer electrolytes employing a novel class of plasticizers, Solid State Ion., 98, 167, 10.1016/S0167-2738(97)00117-3

Slane, 1995, Composite gel electrolyte for rechargeable lithium batteries, J Power Sources, 55, 7, 10.1016/0378-7753(94)02148-V

Croce, 1999, Physical and chemical properties of nanocomposite polymer electrolytes, J. Phys. Chem. B, 103, 10632, 10.1021/jp992307u

Krawiec, 1995, Polymer nanocomposites: a new strategy for synthesizing solid electrolytes for rechargeable lithium batteries, J Power Sources, 54, 310, 10.1016/0378-7753(94)02090-P

Croce, 1998, Nanocomposite polymer electrolytes for lithium batteries, Nature, 394, 456, 10.1038/28818

Jayathilaka, 2002, Effect of nano-porous Al2O3 on thermal, dielectric and transport properties of the (PEO)9LiTFSI polymer electrolyte system, Electrochim. Acta, 47, 3257, 10.1016/S0013-4686(02)00243-8

Bhattacharyya, 2004, Second phase effects on the conductivity of non-aqueous salt solutions: “Soggy sand electrolytes”, Adv. Mater., 16, 811, 10.1002/adma.200306210

Yamada, 2006, Extremely high silver ionic conductivity in composites of silver halide (AgBr, AgI) and mesoporous alumina, Adv. Funct. Mater., 16, 525, 10.1002/adfm.200500538

Adebahr, 2003, Ion transport in polymer electrolytes containing nanoparticulate TiO2: the influence of polymer morphology, Phys. Chem. Chem. Phys., 5, 720, 10.1039/b208454f

Croce, 2001, Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes, Electrochim. Acta, 46, 2457, 10.1016/S0013-4686(01)00458-3

Wieczorek, 1996, Composite polyether based solid electrolytes. The Lewis acid-base approach, Solid State Ion., 85, 67, 10.1016/0167-2738(96)00042-2

Lin, 2005, Influence of TiO2 nano-particles on the transport properties of composite polymer electrolyte for lithium-ion batteries, J. Power Sources, 146, 397, 10.1016/j.jpowsour.2005.03.028

Appetechi, 2001, Composite gel membranes: a new class of improved polymer electrolytes for lithium batteries, Electrochem. Commun., 3, 281, 10.1016/S1388-2481(01)00137-0

Ahmad, 2006, The effect of nanosized TiO2 addition on poly(methylmethacrylate) based polymer electrolytes, J. Power Sources, 159, 205, 10.1016/j.jpowsour.2006.04.044

Croce, 2000, Nanocomposite polymer electrolytes and their impact on the lithium, Solid State Ion., 135, 47, 10.1016/S0167-2738(00)00329-5

Scrosati, 2000, Impedance spectroscopy study of PEO-Based nanocomposite polymer electrolytes, J. Electrochem. Soc., 147, 1718, 10.1149/1.1393423

Pitawala, 2007, Combined effect of Al2O3 nano-fillers and EC plasticizer on ionic conductivity enhancement in the solid polymer electrolyte (PEO)9LiTf, Solid State Ion., 178, 885, 10.1016/j.ssi.2007.04.008

Klongkan, 2015, Effects of nano alumina and plasticizers on morphology, ionic conductivity, thermal and mechanical properties of PEO-LiCF3SO3 solid polymer electrolyte, Electrochim. Acta, 161, 171, 10.1016/j.electacta.2015.02.074

Capiglia, 1999, Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly(ethylene oxide) (PEO)-based polymer electrolytes, Solid State Ion., 118, 73, 10.1016/S0167-2738(98)00457-3

Jiang, 2005, All solid-state lithium-polymer battery using poly(urethane acrylate)/nano-SiO composite electrolytes, J. Power Sources, 141, 143, 10.1016/j.jpowsour.2004.09.004

Vignarooban, 2014, Effect of TiO2 nano-filler and EC plasticizer on electrical and thermal properties of poly(ethylene oxide) (PEO) based solid polymer electrolytes, Solid State Ion., 266, 25, 10.1016/j.ssi.2014.08.002

Yoon, 2013, Fabrication of Li-polymer/silica aerogel nanocomposite electrolyte for an all-solid-state lithium battery, Ceram. Int., 39, 9659, 10.1016/j.ceramint.2013.05.088

Liu, 2010, Effect of nano-silica filler in polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)-Li(CF3SO2)2N/Li, J. Power Sources, 195, 6847, 10.1016/j.jpowsour.2010.04.027

Shanmukaraj, 2008, Ionic conductivity and electrochemical stability of poly(methylmethacrylate)-poly(ethylene oxide) blend-ceramic fillers composites, J. Phys. Chem. Solids, 69, 243, 10.1016/j.jpcs.2007.08.072

Sun, 2000, Ferroelectric materials as a ceramic filler in solid composite polyethylene oxide-based eectrolytes, J. Electrochem. Soc., 147, 2462, 10.1149/1.1393554

Huang, 2011, A novel intumescent flame retardant-functionalized montmorillonite: Preparation, characterization, and flammability properties, Appl. Clay Sci., 51, 360, 10.1016/j.clay.2010.11.016

Walls, 2003, Nanocomposite electrolytes with fumed silica and hectorite clay networks: passive verus active fillers, Adv. Funct. Mater., 13, 710, 10.1002/adfm.200304333

Zhang, 2015, Synthesis of poly(ethylene-oxide)/nanoclay solid polymer electrolyte for all solid-state lithium/sulfur battery, Ionics, 21, 381, 10.1007/s11581-014-1176-2

Prasanth, 2013, Effect of nano-clay on ionic conductivity and electrochemical properties of poly(vinylidene fluoride) based nanocomposite porous polymer membranes and their application as polymer electrolyte in lithium ion batteries, Eur. Polym. J., 49, 307, 10.1016/j.eurpolymj.2012.10.033

Moreno, 2011, Electrical and mechanical properties of poly(ethylene oxide)/intercalated clay polymer electrolyte, Electrochim. Acta, 58, 112, 10.1016/j.electacta.2011.08.096

Tang, 2012, High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers, Nano Lett., 12, 1152, 10.1021/nl202692y

Cho, 1997, Preparation and electrochemical properties of glass-polymer composite electrolytes for lithium batteries, Electrochim. Acta., 42, 1481, 10.1016/S0013-4686(96)00303-9

Kobayashi, 2002, All-solid-state lithium secondary battery with ceramic polymer composite electrolyte, Solid State Ion., 152–153, 137, 10.1016/S0167-2738(02)00366-1

Choi, 2015, Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix, J. Power Sources, 274, 458, 10.1016/j.jpowsour.2014.10.078

Jung, 2015, All solid-state lithium batteries assembled with hybrid solid electrolytes, J. Electrochem. Soc., 162, A704, 10.1149/2.0731504jes

Zhao, 2016, A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries, J. Power Sources, 301, 47, 10.1016/j.jpowsour.2015.09.111

Liang, 2016, Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating, Proc. Natl. Acad. Sci. USA, 113, 2862, 10.1073/pnas.1518188113

Liu, 2016, Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode, Nat. Commun., 7, 10992, 10.1038/ncomms10992

Cheng, 2016, Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries, Adv. Mater., 28, 2888, 10.1002/adma.201506124

Kato, 2016, High-power all-solid-state batteries using sulfide superionic conductors, Nat. Energy, 1, 16030, 10.1038/nenergy.2016.30

Zhao, 2016, A sustainable and rigid-flexible coupling cellulose-supported poly(propylene carbonate) polymer electrolyte towards 5V high voltage lithium batteries, Electrochim. Acta, 188, 23, 10.1016/j.electacta.2015.11.088

Chai, 2016, A high-voltage poly(methylethyl α-cyanoacrylate) composite polymer electrolyte for 5V lithium batteries, J. Mater. Chem. A, 4, 5191, 10.1039/C6TA00828C