All-silicon photon emitter with colloidal PbS quantum dot in tunable microcavity
Tài liệu tham khảo
Lounis, 2000, Single photons on demand from a single molecule at room temperature, Nature, 407, 491, 10.1038/35035032
Santori, 2002, Polarizatiion-correlated photon pairs from a single quantum dot, Phys. Rev. B, 66, 10.1103/PhysRevB.66.045308
Stevenson, 2002, Quantum dots as a photon source for passive quantum key encoding, Phys. Rev. B, 66, 10.1103/PhysRevB.66.081302
Ulrich, 2003, Triggered polarization-correlated photon pairs from a single CdSe quantum dot, Appl. Phys. Lett., 83, 1848, 10.1063/1.1605809
Flagg, 2010, Interference of single photons from two separate semiconductor quantum dots, Phys. Rev. Lett., 104, 10.1103/PhysRevLett.104.137401
Babinec, 2010, A diamond nanowire single-photon source, Nat. Nanotechnol., 5, 195, 10.1038/nnano.2010.6
Fujiwara, 2011, Highly efficient coupling of photons from nanoemitters into single-mode optical fibers, Nano Lett., 11, 4362, 10.1021/nl2024867
Dong, 2014, Optical properties of PbS-doped silica optical fiber materials based on atomic layer deposition, Appl. Surf. Sci., 320, 372, 10.1016/j.apsusc.2014.09.073
Fan, 2015, Formation and selective micron-regional control of PbS quantum dots in glasses using femtosecond laser pulsation, J. Mater. Chem. C, 3, 6725, 10.1039/C5TC00338E
Huang, 2017, Formation, element-migration and broadband luminescence in quantum dot-doped glass fibers, Optic Express, 25, 19691, 10.1364/OE.25.019691
Nakashima, 2017, Fabrication of optical waveguides inside transparent silica xerogels containing PbS quantum dots using a femtosecond laser, Appl. Phys. A, 123, 723, 10.1007/s00339-017-1349-8
Jiang, 1999, Optical resonance modes in GaN pyramid microcavities, Appl. Phys. Lett., 75, 763, 10.1063/1.124505
Suemune, 1999, Semiconductor photonic dots: visible wavelength-sized optical resonators, Appl. Phys. Lett., 74, 1963, 10.1063/1.123714
Qualtieri, 2009, Nonclassical emission from single colloidal nanocrystals in a microcavity: a route towards room temperature single photon sources, N. J. Phys., 11, 10.1088/1367-2630/11/3/033025
Tandaechanurat, 2009, Demonstration of high-Q (>8600) three-dimensional photonic crystal nanocavity embedding quantum dots, Appl. Phys. Lett., 94, 10.1063/1.3127523
Nomura, 2010, Zero-cell photonic crystal nanocavity laser with quantum dot gain, Appl. Phys. Lett., 97, 10.1063/1.3514556
Bayer, 2002, Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots, Phys. Rev. B, 65, 10.1103/PhysRevB.65.195315
Akopian, 2006, Entangled photon pairs from semiconductor quantum dots, Phys. Rev. Lett., 96, 10.1103/PhysRevLett.96.130501
Hafenbrak, 2007, Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K, N. J. Phys., 9, 315, 10.1088/1367-2630/9/9/315
Singh, 2009, Nanowire quantum dots as an ideal source of entangled photon pairs, Phys. Rev. Lett., 103, 10.1103/PhysRevLett.103.063601
Mukai, 2013, Temperature-controlled symmetry of linear polarization of photoluminescence from InGaAs- buried InAs/GaAs quantum dots, Jpn. J. Appl. Phys., 52, 10.7567/JJAP.52.06GG04
Mukai, 2007, Photonic dot structure which emits photons horizontally to a built-in waveguide, J. Cryst. Growth, 301/302, 984, 10.1016/j.jcrysgro.2006.11.119
Mukai, 2014, Semiconductor quantum dots for future optical application, J. Nanosci. Nanotechnol., 14, 2148, 10.1166/jnn.2014.8608
Ohshima, 2003, All-optical electron spin quantum computers using quantum dot array formed by AFM oxidation, J. Phys. Soc. Jpn., 72, 87, 10.1143/JPSJS.72SA.87
Kiravittaya, 2006, Photoluminescence from seeded three-dimensional quantum-dot crystals, Appl. Phys. Lett., 88, 10.1063/1.2168494
Ohkouchi, 2009, Site-controlled InAs quantum dot formation grown on the templates fabricated by the Nano-Jet Probe method, J. Cryst. Growth, 311, 1819, 10.1016/j.jcrysgro.2008.11.023
Mukai, 2014, Formation of nanohole for positioning of colloidal quantum dot, Jpn. J. Appl. Phys., 53, 10.7567/JJAP.53.06JF08
Folsch, 2014, Quantum dots with single-atom precision, Nature Nanotechnol., 9, 505, 10.1038/nnano.2014.129
Mukai, 2015, Position control of PbS quantum dot using nanohole on silicon substrate processed by scanning probe lithography, Jpn, J. Appl. Phys., 54, 10.7567/JJAP.54.04DJ02
Mukai, 2015, Template method for nano-order positioning and dense packing of quantum dots for optoelectronic device application, Semicond. Sci. Technol., 30, 10.1088/0268-1242/30/4/044006
Nozaka, 2016, Controlled waveguide coupling for photon emission from colloidal PbS quantum dot using tunable microcavity made of optical polymer and silicon, Physica E, 78, 14, 10.1016/j.physe.2015.11.026
Thornton, 1986, The microstructure of sputter-deposited coatings, J. Vac. Sci. Technol. A, 4, 3059, 10.1116/1.573628
Osterberg, 1997, M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures, J. MEMS, 6, 107, 10.1109/84.585788