All region analytical modeling of 2-D transition metal dichalcogenide FET by considering effect of fringing field and region-wise mobility

Niraj Kumar Singh1, Monika Kumari1, Manodipan Sahoo1
1Department of Electronics Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India

Tài liệu tham khảo

Moore, 1965, Cramming more components on to the integrated circuits, Proc. IEEE, 38, 114 Aissa, 2019, Thermal transport in graphene field-effect transistors with ultrashort channel length, Superlattices Microstruct., 128, 265, 10.1016/j.spmi.2019.02.004 Mahatha, 2012, Electronic structure investigation of MoS2 and MoSe2 using angle-resolved photoemission spectroscopy and ab initio band structure studies, J. Phys.: Condens. Matter, 24 Hwang, 2012, Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior, Appl. Phys. Lett., 101 Kharadi, 2020, Review–silicene: From material to device applications, ECS J. Solid State Sci. Technol., 9, 10.1149/2162-8777/abd09a Radisavljevic, 2011, Single-layer MoS2 transistors, Nat. Nanotechnol., 6, 147, 10.1038/nnano.2010.279 Alam, 2012, Monolayer MoS2 transistors beyond the technology road map, IEEE Trans. Electron Devices, 59, 3250, 10.1109/TED.2012.2218283 Yau, 1974, A simple theory to predict the threshold voltage of short channel IGFETs, Solid-State Electron., 17, 1059, 10.1016/0038-1101(74)90145-2 Jimenez, 2012, Drift-diffusion model for single layer transition metal dichalcogenide field-effect transistors, Appl. Phys. Lett., 101, 10.1063/1.4770313 Cao, 2014, A compact current–voltage model for 2D semiconductor based field-effect transistors considering interface traps, mobility degradation, and inefficient doping effect, IEEE Trans. Electron Devices, 61, 4282, 10.1109/TED.2014.2365028 S.V. Suryavanshi, E. Pop, Physics–based compact model for circuit simulations of 2-dimensional semiconductor devices, in: Proc. 73rd Annu. Device Res. Conf., DRC, 2015, pp. 235–236. Taur, 2016, A short-channel I−V model for 2−D MOSFETs, IEEE Trans. Electron Devices, 63, 2550, 10.1109/TED.2016.2547949 Liang, 2004, A 2–D analytical solution for SCEs in DG MOSFETs, IEEE Trans. Electron Devices, 51, 1385, 10.1109/TED.2004.832707 Frank, 1998, Generalized scale length for two-dimensional effects in MOSFETs, IEEE Electron Device Lett., 19, 385, 10.1109/55.720194 You, 2016, A compact subthreshold model for short–channel monolayer transition metal dichalcogenide field-effect transistors, IEEE Trans. Electron Devices, 63, 2971, 10.1109/TED.2016.2564424 Gholipour, 2017, A compact short-channel model for symmetric double–gate TMDFET in subthreshold region, IEEE Trans. Electron Devices, 64, 3466, 10.1109/TED.2017.2716951 Singh, 2020, A compact short–channel analytical drain current model of asymmetric dual-gate TMD FET in subthreshold region including fringing field effects, IEEE Access, 8, 207982, 10.1109/ACCESS.2020.3038421 Cao, 2014, A compact current–Voltage model for 2D semiconductor based field-effect transistors considering interface traps, mobility degradation, and inefficient doping effect, IEEE Trans. Electron Devices, 61, 4282, 10.1109/TED.2014.2365028 Yadav, 2017, Compact modeling of transition metal dichalcogenide based thin body transistors and circuit validation, IEEE Trans. Electron Devices, 64, 1261, 10.1109/TED.2016.2643698 Taur, 2018, Modeling of DG MOSFET I - V characteristics in the saturation region, IEEE Trans. Electron Devices, 65, 1714, 10.1109/TED.2018.2818943 Taur, 2019, A non-GCA DG MOSFET model continuous into the Velocity Saturation Region, IEEE Trans. Electron Devices, 66, 1160, 10.1109/TED.2019.2894685 Ren, 2020, Non–GCA modeling of near threshold I-V characteristics of DG MOSFETs, Solid State Electron., 166, 10.1016/j.sse.2020.107766 Ahsan, 2020, A comprehensive physics-based current-voltage SPICE compact model for 2−D-material-based top-contact bottom-gated Schottky-barrier FETs, IEEE Trans. Electron Devices, 67, 5188, 10.1109/TED.2020.3020900 Yarmoghaddam, 2020, A physics-based compact model for ultrathin black phosphorus FETs–Part I: Effect of contacts, temperature, ambipolarity, and traps, IEEE Trans. Electron Devices, 67, 389, 10.1109/TED.2019.2951662 Ahsan, 2021, A SPICE compact model for ambipolar 2−D-material FETs aiming at circuit design, IEEE Trans. Electron Devices, 68, 3096, 10.1109/TED.2021.3074357 2022 Rawat, 2018, A comprehensive study in carrier mobility and artificial photosynthetic properties in group VI B transition metal dichalcogenide monolayers, J. Mater. Chem. A, 6, 8693, 10.1039/C8TA01943F Ilatikhameneh, 2015, Tunnel field-effect transistors in 2−D transition metal dichalcogenide materials, J. Explor. Solid-State Comput. Devices Circuits, 1, 12, 10.1109/JXCDC.2015.2423096 Lv, 2015, Perfect charge compensation in WTe2 for the extraordinary magnetoresistance: From bulk to monolayer, EPL, 110, 37004, 10.1209/0295-5075/110/37004 Yadav, 2018, Charge-based modeling of transition metal dichalcogenide transistors including ambipolar, trapping, and negative capacitance effects, IEEE Trans. Electron Devices, 65, 4202, 10.1109/TED.2018.2855109 You, 2018, Short-channel effects in 2D negative-capacitance field-effect transistors, IEEE Trans. Electron Devices, 65, 1604, 10.1109/TED.2018.2805716 2021