All-order ɛ expansions of hypergeometric functions of one variable

Pleiades Publishing Ltd - Tập 41 Số 6 - Trang 942-945 - 2010
Moscow Kalmykov1, Bernd A. Kniehl1
1Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

N. N. Bogolyubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields (Wiley, New York, 1980).

S. Moch, P. Uwer, and S. Weinzierl, J. Math. Phys. 43, 3363 (2002).

S. Weinzierl, J. Math. Phys. 45, 2656 (2004).

A. B. Goncharov, Math. Res. Lett. 4, 617 (1997); E. Remiddi and J. A. M. Vermaseren, Int. J. Mod. Phys. A 15, 725 (2000); J. M. Borwein et al., Trans. Am. Math. Soc. 353, 907 (2001); J. Vollinga and S. Weinzierl, Comput. Phys. Commun. 167, 177 (2005).

D. Kreimer, Adv. Theor. Math. Phys. 2, 303 (1998).

D. J. Broadhurst, Eur. Phys. J. C 8, 311 1999; A. I. Davydychev and M. Yu. Kalmykov, Nucl. Phys. B 605, 266 (2001); F. Jegerlehner, M. Yu. Kalmykov, and O. Veretin, Nucl. Phys. B 658, 49 (2003).

A. I. Davydychev and M. Yu. Kalmykov, Nucl. Phys. B 699, 3 (2004).

M. Yu. Kalmykov, B. F. L. Ward, and S. Yost, J. High Energy Phys. 02, 040 (2007); J. High Energy Phys. 10, 048 (2007); J. High Energy Phys. 11, 009 (2007); M. Yu. Kalmykov and B. A. Kniehl, Nucl. Phys. B 809, 365 (2009); M. Yu. Kalmykov et al., arXiv:0810.3238

V. Del Duca et al., J. High Energy Phys. 01, 042 (2010).

N. Takayama, Jpn. J. Appl. Math. 6, 147 (1989).

M. Yu. Kalmykov, J. High Energy Phys. 04, 056 (2006); V. V. Bytev, M. Yu. Kalmykov, and B. A. Kniehl, arXiv:0904.0214.

M. Yu. Kalmykov, Nucl. Phys. Proc. Suppl. 135, 280 (2004).

T. Huber and D. Maitre, Comput. Phys. Commun. 178, 755 (2008).