Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tất cả các màng dựa trên chất thải thực phẩm cho việc loại bỏ Chromium(VI)
Tóm tắt
Trong công trình này, chúng tôi chứng minh rằng màng vỏ trứng (ESM) có thể được chức năng hóa thành công bằng các chiết xuất từ vỏ cam hoặc lá và thân của bông cải xanh, nhằm tạo ra một vật liệu hấp phụ hoàn toàn dựa trên chất thải thực phẩm, lý tưởng cho việc loại bỏ Chromium hóa trị VI (Cr(VI)) khỏi nước. Cách tiếp cận này đại diện cho một ví dụ điển hình về giải pháp đồng thời cho một số thách thức toàn cầu lớn: đảm bảo nước sạch và tái chế chất thải thực phẩm. Nguyên lý hoạt động của hệ thống được trình bày dựa trên sự tương tác hiệp đồng giữa các nhóm chức của ESM (đặc biệt là các nhóm amino proton hóa và nhóm axit carboxylic) và các axit hữu cơ có trong các chiết xuất thực vật, cho phép tạo ra một thiết bị hoạt động hiệu quả trong các điều kiện thực tế.
Từ khóa
#màng vỏ trứng #chất thải thực phẩm #loại bỏ Chromium(VI) #hấp phụ #tái chế chất thảiTài liệu tham khảo
Al-Abadleh HA, Voges AB, Bertin PA et al (2004) Chromium (VI) binding to functionalized silica/water interfaces studied by nonlinear optical spectroscopy. J Am Chem Soc 126:11126–11127. https://doi.org/10.1021/ja048063v
Al-Abadleh HA, Mifflin AL, Musorrafiti MJ, Geiger FM (2005) Kinetic studies of chromium (VI) binding to carboxylic acid- and methyl ester-functionalized silica/water interfaces important in geochemistry. J Phys Chem B 109:16852–16859. https://doi.org/10.1021/jp053006p
Baláž M (2014) Eggshell membrane biomaterial as a platform for applications in materials science. Acta Biomater 10:3827–3843. https://doi.org/10.1016/j.actbio.2014.03.020
Bao S, Yang W, Wang Y et al (2020) PEI grafted amino-functionalized graphene oxide nanosheets for ultrafast and high selectivity removal of Cr(VI) from aqueous solutions by adsorption combined with reduction: Behaviors and mechanisms. Chem Eng J 399:125762. https://doi.org/10.1016/j.cej.2020.125762
BioIntelligenceService (2010) Preparatory Study on Food Waste Across Eu 27 https://ec.europa.eu/environment/eussd/pdf/bio_foodwaste_report.pdf
Chang X, Li M, Liu Q et al (2016) Adsorption-reduction of chromium(VI) from aqueous solution by phenol-formaldehyde resin microspheres. RSC Adv 6:46879–46888. https://doi.org/10.1039/c6ra07239a
Daraei H, Mittal A, Mittal J, Kamali H (2014) Optimization of Cr(VI) removal onto biosorbent eggshell membrane: experimental & theoretical approaches. Desalin Water Treat 52:1307–1315. https://doi.org/10.1080/19443994.2013.787374
Fruton JS (1934) Oxidation-reduction potentials of ascorbic acid. J Biol Chem 105:79–85
Gallo M, Vitulano M, Andolfi A et al (2017) Rapid solid-liquid dynamic extraction (RSLDE): a new rapid and greener method for extracting two steviol glycosides (stevioside and rebaudioside A) from stevia leaves. Plant Foods Hum Nutr 72:141–148. https://doi.org/10.1007/s11130-017-0598-1
Gjipalaj J, Alessandri I (2017) Easy recovery, mechanical stability, enhanced adsorption capacity and recyclability of alginate-based TiO2 macrobead photocatalysts for water treatment. J Environ Chem Eng 5:1763–1770. https://doi.org/10.1016/j.jece.2017.03.017
Guo X, Zhang F, Peng Q et al (2011) Layered double hydroxide/eggshell membrane: an inorganic biocomposite membrane as an efficient adsorbent for Cr(VI) removal. Chem Eng J 166:81–87. https://doi.org/10.1016/j.cej.2010.10.010
Gustavsson J, Cederberg C, van Otterdijk R, Meybeck A (2011) Global food losses and food waste. Extent, causes and prevention. https://doi.org/10.1098/rstb.2010.0126
Huang X, Liu Y, Liu S et al (2015) Effective removal of Cr(VI) using β-cyclodextrin-chitosan modified biochars with adsorption/reduction bifuctional roles. RSC Adv 6:94–104. https://doi.org/10.1039/c5ra22886g
InterregEurope (2020) Sustainable waste management in a circular economy A Policy Brief from the Policy Learning Platform on Environment and resource efficiency. https://www.interregeurope.eu/fileadmin/user_upload/plp_uploads/policy_briefs/Policy_brief_on_waste_management.pdf
Jiang B, Gong Y, Gao J et al (2019) The reduction of Cr(VI) to Cr(III) mediated by environmentally relevant carboxylic acids: state-of-the-art and perspectives. J Hazard Mater 365:205–226. https://doi.org/10.1016/j.jhazmat.2018.10.070
Laca A, Laca A, Díaz M (2017) Eggshell waste as catalyst: a review. J Environ Manag 197:351–359. https://doi.org/10.1016/j.jenvman.2017.03.088
Liang M, Su R, Qi W et al (2014) Reduction of Hexavalent chromium using recyclable Pt/Pd nanoparticles immobilized on procyanidin-grafted eggshell membrane. Ind Eng Chem Res 53:13635–13643. https://doi.org/10.1021/ie5021552
Liu B, Huang Y (2011) Polyethyleneimine modified eggshell membrane as a novel biosorbent for adsorption and detoxification of Cr(VI) from water. J Mater Chem 21:17413–17418. https://doi.org/10.1039/c1jm12329g
Liu Y, Wang X (2013) Colorimetric speciation of Cr(iii) and Cr(vi) with a gold nanoparticle probe. Anal Methods 5:1442–1448. https://doi.org/10.1039/c3ay00016h
Lyu W, Wu J, Zhang W et al (2019) Easy separated 3D hierarchical coral-like magnetic polyaniline adsorbent with enhanced performance in adsorption and reduction of Cr(VI) and immobilization of Cr(III). Chem Eng J 363:107–119. https://doi.org/10.1016/j.cej.2019.01.109
Mallampati R, Valiyaveettil S (2014) Eggshell membrane-supported recyclable catalytic noble metal nanoparticles for organic reactions. ACS Sustain Chem Eng 2:855–859. https://doi.org/10.1021/sc4004899
Mittal A, Teotia M, Soni RK, Mittal J (2016) Applications of egg shell and egg shell membrane as adsorbents: a review. J Mol Liq 223:376–387. https://doi.org/10.1016/j.molliq.2016.08.065
Mura S, Jiang Y, Vassalini I et al (2018) Graphene oxide/iron oxide nanocomposites for water remediation. ACS Appl Nano Mater 1:6724–6732. https://doi.org/10.1021/acsanm.8b01540
Naviglio D, Scarano P, Ciaravolo M, Gallo M (2019) Rapid solid-liquid dynamic extraction (RSLDE): A powerful and greener alternative to the latest solid-liquid extraction techniques. Foods 8:1–22. https://doi.org/10.3390/foods8070245
Pakade VE, Tavengwa NT, Madikizela LM (2019) Recent advances in hexavalent chromium removal from aqueous solutions by adsorptive methods. RSC Adv 9:26142–26164. https://doi.org/10.1039/c9ra05188k
Park D, Lim SR, Yun YS, Park JM (2007) Reliable evidences that the removal mechanism of hexavalent chromium by natural biomaterials is adsorption-coupled reduction. Chemosphere 70:298–305. https://doi.org/10.1016/j.chemosphere.2007.06.007
Suyama K, Fukazawa Y, Umetsu Y (1994) A new biomaterial, hen egg shell membrane, to eliminate heavy metal ion from their dilute waste solution. Appl Biochem Biotechnol 45–46:871–879. https://doi.org/10.1007/BF02941856
Tadjenant Y, Dokhan N, Barras A et al (2020) Graphene oxide chemically reduced and functionalized with KOH-PEI for efficient Cr(VI) adsorption and reduction in acidic medium. Chemosphere 258:127316. https://doi.org/10.1016/j.chemosphere.2020.127316
Vassalini I, Alessandri I (2015) Spatial and temporal control of information storage in cellulose by chemically activated oscillations. ACS Appl Mater Interfaces 7:28708–28713. https://doi.org/10.1021/acsami.5b11857
Vassalini I, Alessandri I (2017) “the phactalysts”: carbon nanotube/TiO2 composites as phototropic actuators for wireless remote triggering of chemical reactions and catalysis. Nanoscale 9:11446–11451. https://doi.org/10.1039/c7nr05104b
Vassalini I, Alessandri I (2018) Switchable stimuli-responsive heterogeneous catalysis. Catalysts 8:1–25. https://doi.org/10.3390/catal8120569
Vassalini I, Alessandri I (2019) Filter for removing heavy metals which are harmful to human health from aqueous solutions and method for obtaining thereof. patent pending n. EP19182546.2
Vassalini I, Gjipalaj J, Crespi S et al (2020) Alginate-derived active blend enhances adsorption and photocatalytic removal of organic pollutants in water. Adv Sustain Syst 1900112:1–11. https://doi.org/10.1002/adsu.201900112
Vikesland PJ (2018) Nanosensors for water quality monitoring. Nat Nanotechnol 13:651–660. https://doi.org/10.1038/s41565-018-0209-9
Wang S, Wei M, Huang Y (2013) Biosorption of multifold toxic heavy metal ions from aqueous water onto food residue eggshell membrane functionalized with ammonium thioglycolate. J Agric Food Chem 61:4988–4996. https://doi.org/10.1021/jf4003939
Xu XR, Bin LH, Li XY, Gu JD (2004) Reduction of hexavalent chromium by ascorbic acid in aqueous solutions. Chemosphere 57:609–613. https://doi.org/10.1016/j.chemosphere.2004.07.031
Xu Y, Chen J, Chen R et al (2019) Adsorption and reduction of chromium(VI) from aqueous solution using polypyrrole/calcium rectorite composite adsorbent. Water Res 160:148–157. https://doi.org/10.1016/j.watres.2019.05.055
Zhang Y, Li M, Li J et al (2019) Surface modified leaves with high efficiency for the removal of aqueous Cr (VI). Appl Surf Sci 484:189–196. https://doi.org/10.1016/j.apsusc.2019.04.088
Zou AM, Chen XW, Chen ML, Wang JH (2008) Sequential injection reductive bio-sorption of Cr(VI) on the surface of egg-shell membrane and chromium speciation with detection by electrothermal atomic absorption spectrometry. J Anal At Spectrom 23:412–415. https://doi.org/10.1039/b714535g