All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region

Photoacoustics - Tập 18 - Trang 100163 - 2020
Manoj K. Dasa1, Gianni Nteroli2, Patrick Bowen3, Giulia Messa4, Yuyang Feng5, Christian R. Petersen1,6, Stella Koutsikou4, Magalie Bondu3, Peter M. Moselund3, Adrian Podoleanu2, Adrian Bradu2, Christos Markos1,6, Ole Bang1,6,3
1DTU Fotonik, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
2Applied Optics Group, University of Kent, Canterbury, UK
3NKT Photonics A/S, Blokken 84, 3460 Birkerød, Denmark
4Medway School of Pharmacy, University of Kent, Chatham, UK
5COPAC A/S, Diplomvej 381, 2800 Kongens Lyngby, Denmark
6NORBLIS IVS, Virumgade 35D, 2830 Virum, Denmark

Tài liệu tham khảo

Junjie, 2013, Photoacoustic microscopy, Laser Photonics Rev., 7, 758, 10.1002/lpor.201200060 Strohm, 2015, Single cell photoacoustic microscopy: a review, Ieee J. Sel. Top. Quantum Electron., 22, 137, 10.1109/JSTQE.2015.2497323 Zhang, 2007, Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy, Appl. Phys. Lett., 90, 10.1063/1.2435697 Oh, 2006, Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy, J. Biomed. Opt., 11, 10.1117/1.2210907 Jeon, 2019, Review on practical photoacoustic microscopy, Photoacoustics, 100141, 10.1016/j.pacs.2019.100141 Farese, 2009, Lipid droplets finally get a little RESPECT, Cell, 139, 855, 10.1016/j.cell.2009.11.005 Zhang, 2010, Lipid droplets as ubiquitous fat storage organelles in C. Elegans, BMC Cell Biol., 11, 96, 10.1186/1471-2121-11-96 Folick, 2011, Label-free imaging of lipid dynamics using Coherent Anti-stokes Raman Scattering (CARS) and Stimulated Raman Scattering (SRS) microscopy, Curr. Opin. Genet. Dev., 21, 585, 10.1016/j.gde.2011.09.003 Chi, 2018, Three-dimensional adipose tissue imaging reveals regional variation in beige fat biogenesis and PRDM16-dependent sympathetic neurite density, Cell Metab., 27, 226, 10.1016/j.cmet.2017.12.011 Huff, 2007, In vivo coherent anti-Stokes Raman scattering imaging of sciatic nerve tissue, J. Microsc., 225, 175, 10.1111/j.1365-2818.2007.01729.x Hu, 2014, Label-free real-time imaging of myelination in the Xenopus laevis tadpole by in vivo stimulated Raman scattering microscopy, J. Biomed. Opt., 19, 10.1117/1.JBO.19.8.086005 den Broeder, 2017, Altered adipogenesis in zebrafish larvae following high fat diet and chemical exposure is visualized by stimulated Raman scattering microscopy, Int. J. Mol. Sci., 18, 894, 10.3390/ijms18040894 Chien, 2011, Label-free imaging of Drosophila in vivo by coherent anti-Stokes Raman scattering and two-photon excitation autofluorescence microscopy, J. Biomed. Opt., 16, 10.1117/1.3528642 Beard, 1997, Characterization of post mortem arterial tissue using time-resolved photoacoustic spectroscopy at 436, 461 and 532 nm, Phys. Med. Biol., 42, 177, 10.1088/0031-9155/42/1/012 Sethuraman, 2007, Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques, Opt. Express, 16, 3362, 10.1364/OE.16.003362 Wang, 2011, Label-free bond-selective imaging by listening to vibrationally excited molecules, Phys. Rev. Lett., 106, 10.1103/PhysRevLett.106.238106 Allen, 2012, Spectroscopic photoacoustic imaging of lipidrich plaques in the human aorta in the 740 to 1400 nm wavelength range, J. Biomed. Opt., 17, 10.1117/1.JBO.17.6.061209 Wang, 2012, Mapping lipid and collagen by multispectral photoacoustic imaging of chemical bond vibration, J. Biomed. Opt., 17, 10.1117/1.JBO.17.9.096010 Jansen, 2014, Spectroscopic intravascular photoacoustic imaging of lipids in atherosclerosis, J. Biomed. Opt., 19, 10.1117/1.JBO.19.2.026006 Wu, 2014, Assessment of white matter loss using bond-selective photoacoustic imaging in a rat model of contusive spinal cord injury, J. Neurotrauma, 31, 1998, 10.1089/neu.2014.3349 Jansen, 2014, Photoacoustic imaging of human coronary atherosclerosis in two spectral bands, Photoacoustics, 2, 12, 10.1016/j.pacs.2013.11.003 Buma, 2015, Near-infrared spectroscopic photoacoustic microscopy using a multi-color fiber laser source, Biomed. Opt. Express, 6, 2819, 10.1364/BOE.6.002819 Hui, 2015, High-speed intravascular photoacoustic imaging at 1.7 μm with a KTP-based OPO, Biomed. Opt. Express, 6, 4557, 10.1364/BOE.6.004557 Piao, 2015, High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7μm, Appl. Phys. Lett., 107, 10.1063/1.4929584 Wu, 2015, Specific imaging of atherosclerotic plaque lipids with two-wavelength intravascular photoacoustics, Biomed. Opt. Express, 6, 3276, 10.1364/BOE.6.003276 Hui, 2016, Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves, Photoacoustics, 4, 11, 10.1016/j.pacs.2016.01.002 Buma, 2016, Near-infrared multispectral photoacoustic microscopy using a graded-index fiber amplifier, Photoacoustics, 4, 83, 10.1016/j.pacs.2016.08.002 Buma, 2018, Multispectral photoacoustic microscopy of lipids using a pulsed supercontinuum laser, Biomed. Opt. Express, 9, 276, 10.1364/BOE.9.000276 Dudley, 2006, Supercontinuum generation in photonic crystal fiber, Rev. Mod. Phys., 78, 1135, 10.1103/RevModPhys.78.1135 Markos, 2017, Hybrid photonic-crystal fiber, Rev.Mod. Phys., 89, 10.1103/RevModPhys.89.045003 Boucon, 2008, Low-threshold all-fiber 1000 nm supercontinuum source based on highly non-linear fiber, Opt. Commun., 281, 4095, 10.1016/j.optcom.2008.04.024 Bondu, 2016, High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy, J. Biomed. Opt., 21, 10.1117/1.JBO.21.6.061005 Aytac-Kipergil, 2016, Development of a Fiber laser with independently adjustable properties for optical resolution photoacoustic microscopy, Sci. Rep., 6, 38674, 10.1038/srep38674 Dasa, 2018, High-pulse energy supercontinuum laser for high-resolution spectroscopic photoacoustic imaging of lipids in the 1650-1850 nm region, Biomed. Opt. Express, 9, 1762, 10.1364/BOE.9.001762 Dasa, 2019, Multispectral photoacoustic sensing for accurate glucose monitoring using a supercontinuum laser, JOSA B, 36, A61, 10.1364/JOSAB.36.000A61 Israelsen, 2019, Real-time high-resolution mid-infrared optical coherence tomography, Light Sci. Appl., 8, 11, 10.1038/s41377-019-0122-5 Petersen, 2018, Towards a table-top synchrotron based on supercontinuum generation, Infrared Phys. Technol., 91, 182, 10.1016/j.infrared.2018.04.008 Petersen, 2018, Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source, Opt. Lett., 43, 999, 10.1364/OL.43.000999 Lee, 2014, In vitro photoacoustic measurement of hemoglobin oxygen saturation using a single pulsed broadband supercontinuum laser source, Appl. Opt., 53, 3884, 10.1364/AO.53.003884 Billeh, 2010, Spectroscopic photoacoustic microscopy using a photonic crystal fiber supercontinuum source, Opt. Express, 18, 18519, 10.1364/OE.18.018519 Lee, 2013, Combined photoacoustic and optical coherence tomography using a single near-infrared supercontinuum laser source, Appl. Opt., 52, 1824, 10.1364/AO.52.001824 Shu, 2016, Single all-fiber-based nanosecond-pulsed supercontinuum source for multispectral photoacoustic microscopy and optical coherence tomography, Opt. Lett., 41, 2743, 10.1364/OL.41.002743 Nieuwkoop, 1956 Jorgensen, 2009, The mechanism and pattern of yolk consumption provide insight into embryonic nutrition in Xenopus, Development, 136, 1539, 10.1242/dev.032425