All-cellulose composites based on the self-reinforced effect

Composites Communications - Tập 9 - Trang 42-53 - 2018
Jinyang Li1,2, Haq Nawaz1, Jin Wu1, Jinming Zhang1, Jiqiang Wan1,2, Qinyong Mi1, Jian Yu1, Jun Zhang1,2
1CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing, 100049, China

Tài liệu tham khảo

Klemm, 2005, Cellulose: fascinating biopolymer and sustainable raw material, Angew. Chem. Int. Ed., 44, 3358, 10.1002/anie.200460587 Malmström, 2012, Controlled grafting of cellulose fibres – an outlook beyond paper and cardboard, Polym. Chem., 3, 1702, 10.1039/C1PY00445J Abdul Khalil, 2012, Green composites from sustainable cellulose nanofibrils: a review, Carbohydr. Polym., 87, 963, 10.1016/j.carbpol.2011.08.078 OSullivan, 1997, Cellulose: the structure slowly unravels, Cellulose, 4, 173, 10.1023/A:1018431705579 Ioelovich, 2008, Cellulose as a nanostructured polymer: a short review, BioResources, 3, 1403, 10.15376/biores.3.4.Ioelovich Moon, 2011, Cellulose nanomaterials review: structure, properties and nanocomposites, Chem. Sov. Rev., 40, 3941, 10.1039/c0cs00108b Zeng, 2014, Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels, Curr. Opin. Biotechnol., 27, 38, 10.1016/j.copbio.2013.09.008 Kalia, 2011, Cellulose-based bio- and nanocomposites: a review, Int. J. Polym. Sci., 1 Nishino, 1995, Elastic modulus of the crystalline regions of cellulose polymorphs, J. Polym. Sci., Part B: Polym. Phys., 33, 1647, 10.1002/polb.1995.090331110 Hepworth, 2000, A method of calculating the mechanical properties of nanoscopic plant cell wall components from tissue properties, J. Mater. Sci., 35, 5861, 10.1023/A:1026716710498 Hsieh, 2008, An estimation of the Young’s modulus of bacterial cellulose filaments, Cellulose, 15, 507, 10.1007/s10570-008-9206-8 Nakamae, 1987, Experimental determination of the elastic modulus of crystalline regions of some aromatic polyamides, aromatic polyesters, and aromatic polyether ketone, Polym. J., 19, 451, 10.1295/polymj.19.451 Cintrón, 2011, Young’s modulus calculations for cellulose Iβ by MM3 and quantum mechanics, Cellulose, 18, 505, 10.1007/s10570-011-9507-1 Bledzki, 1999, Composites reinforced with cellulose based fibers, Pro. Polym. Sci., 24, 221, 10.1016/S0079-6700(98)00018-5 Wegst, 2004, The mechanical efficiency of natural materials, Philos. Mag., 84, 2167, 10.1080/14786430410001680935 Šimkovic, 2013, Unexplored possibilities of all-polysaccharide composites, Carbohydr. Polym., 95, 697, 10.1016/j.carbpol.2013.03.040 Capiati, 1975, The concept of one polymer composites modelled with high density polyethylene, J. Mater. Sci., 10, 1671, 10.1007/BF00554928 Ward, 1997, Novel composites by hot compaction of fibers, Polym. Eng. Sci., 37, 1809, 10.1002/pen.11830 Peijs, 2003, Composites for recyclability, Mater. Today, 6, 30, 10.1016/S1369-7021(03)00428-0 N. Cabrera, B. Alcock, J. Loos, T. Peijs, Processing of all-polypropylene composites for ultimate recyclability, Proceedings Inst. Mech. Eng., Part L: J. Mater: Des. Appl. 218 (2)145–155. 〈https://doi.org/10.1177/146442070421800208〉, 2004. Ward, 2004, The science and technology of hot compaction, Polymer, 45, 1413, 10.1016/j.polymer.2003.11.050 Nishino, 2003 Huber, 2012, A critical review of all-cellulose composites, J. Mater. Sci., 47, 1171, 10.1007/s10853-011-5774-3 Kalka, 2014, Biodegradability of all-cellulose composite laminates, Compos. Part A: Appl. Sci. Manuf., 59, 37, 10.1016/j.compositesa.2013.12.012 Soykeabkaew, 2008, All-cellulose composites by surface selective dissolution of aligned ligno-cellulosic fibres, Compos. Sci. Technol., 68, 2201, 10.1016/j.compscitech.2008.03.023 Alcock, 2006, The mechanical properties of unidirectional all-polypropylene composites, Compos. Part A Appl. Sci. Manuf., 37, 716, 10.1016/j.compositesa.2005.07.002 Alcock, 2007, The mechanical properties of woven tape all-polypropylene composites, Compos. Part A Appl. Sci. Manuf., 38, 147, 10.1016/j.compositesa.2006.01.003 Duchemin, 2009, Structure-property relationship of all-cellulose composites, Compos. Sci. Technol., 69, 1225, 10.1016/j.compscitech.2009.02.027 Arévalo, 2010, All-cellulose composites by partial dissolution of cotton fibres, J. Biobased Mater. Bioenergy, 4, 129, 10.1166/jbmb.2010.1077 Yousefi, 2015, Direct solvent nanowelding of cellulose fibers to make all-cellulose nanocomposite, Cellulose, 22, 1189, 10.1007/s10570-015-0579-1 Nishino, 2007, All-cellulose composite prepared by selective dissolving of fiber surface, Biomacromolecules, 8, 2712, 10.1021/bm0703416 Gindl, 2005, All-cellulose nanocomposite, Polymer, 46, 10221, 10.1016/j.polymer.2005.08.040 Soykeabkaew, 2009, All-cellulose nanocomposites by surface selective dissolution of bacterial cellulose, Cellulose, 16, 435, 10.1007/s10570-009-9285-1 Eichhorn, 2010, Review: current international research into cellulose nanofibres and nanocomposites, J. Mater. Sci., 45, 1, 10.1007/s10853-009-3874-0 Voronova, 2016, Thermal stability of composites of polyvinyl alcohol with nanocrystalline cellulose in its acid and neutralized forms, Composites, Communications, 2, 15 Liu, 2017, Novel sandwiched structures in starch/cellulose nanowhiskers (CNWs) composite films, Compos. Commun., 4, 5, 10.1016/j.coco.2017.03.001 Yousefi, 2011, Direct fabrication of all-cellulose nanocomposite from cellulose microfibers using ionic liquid-based nanowelding, Biomacromolecules, 12, 4080, 10.1021/bm201147a Ghaderi, 2014, All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application, Carbohydr. Polym., 104, 59, 10.1016/j.carbpol.2014.01.013 Yousefi, 2011, All-cellulose composite and nanocomposite made from partially dissolved micro-and nanofibers of canola straw, Polym. J., 43, 559, 10.1038/pj.2011.31 Adak, 2016, Effect of the dissolution time on the structure and properties of lyocell-fabric-based all-cellulose composite laminates, J. Appl. Polym. Sci., 133, 1, 10.1002/app.43398 Adak, 2017, Effect of pressure on structure and properties of lyocell fabric-based all-cellulose composite laminates, J. Text. Inst., 108, 1010, 10.1080/00405000.2016.1209827 Huber, 2012, Solvent infusion processing of all-cellulose composite materials, Carbohydr. Polym., 90, 730, 10.1016/j.carbpol.2012.05.047 Huber, 2013, Flexural and impact properties of all-cellulose composite laminates, Compos. Sci. Technol., 88, 92, 10.1016/j.compscitech.2013.08.040 Adak, 2017, A comparative study on lyocell-fabric based all-cellulose composite laminates produced by different processes, Cellulose, 24, 835, 10.1007/s10570-016-1149-x Huber, 2012, All-cellulose composite laminates, Compos. Part A: Appl. Sci. Manuf., 43, 1738, 10.1016/j.compositesa.2012.04.017 Dormanns, 2016, Positive size and scale effects of all-cellulose composite laminates, Compos. Part A: Appl. Sci. Manuf., 85, 65, 10.1016/j.compositesa.2016.03.010 Gindl-Altmutter, 2012, All-cellulose composites prepared from flax and lyocell fibres compared to epoxy-matrix composites, Compos. Sci. Technol., 72, 1304, 10.1016/j.compscitech.2012.05.011 Soykeabkaew, 2009, All-cellulose composites of regenerated cellulose fibres by surface selective dissolution, Compos. Part A: Appl. Sci. Manuf., 40, 321, 10.1016/j.compositesa.2008.10.021 Heinze, 2001, Unconventional methods in cellulose functionalization, Prog. Polym. Sci., 26, 1689, 10.1016/S0079-6700(01)00022-3 Nishino, 2004, All-Cellulose Composite, Macromolecules, 37, 7683, 10.1021/ma049300h Dawsey, 1990, The lithium chloride/dimethylacetamide solvent for cellulose: a literature review, J. Macromol. Sci., Part C, 30, 405, 10.1080/07366579008050914 Matsumoto, 2001, Solution properties of celluloses from different biological origins in LiCl·DMAc, Cellulose, 8, 275, 10.1023/A:1015162027350 Dormanns, 2016, Solvent infusion processing of all-cellulose composite laminates using an aqueous NaOH/urea solvent system, Compos. Part A: Appl. Sci. Manuf., 82, 130, 10.1016/j.compositesa.2015.12.002 Piltonen, 2016, Green and efficient method for preparing all-cellulose composites with NaOH/urea solvent, Compos. Sci. Technol., 135, 153, 10.1016/j.compscitech.2016.09.022 Duchemin, 2016, All-cellulose composites based on microfibrillated cellulose and filter paper via a NaOH-urea solvent system, Cellulose, 23, 593, 10.1007/s10570-015-0835-4 Zhu, 2013, Preparation and characterization of novel regenerated cellulose films via sol–gel technology, Ind. Eng. Chem. Res., 52, 17900, 10.1021/ie402791m Yan, 2008, Dissolving of cellulose in PEG/NaOH aqueous solution, Cellulose, 15, 789, 10.1007/s10570-008-9233-5 Han, 2010, Preparation of all-cellulose composite by selective dissolving of cellulose surface in PEG/NaOH aqueous solution, Carbohydr. Polym., 79, 614, 10.1016/j.carbpol.2009.09.008 Swatloski, 2002, Dissolution of cellulose with ionic liquids, J. Am. Chem. Soc., 124, 4974, 10.1021/ja025790m Zhu, 2006, Dissolution of cellulose with ionic liquids and its application: a mini-review, Green. Chem., 8, 325, 10.1039/b601395c Pinkert, 2009, Ionic liquids and their interaction with cellulose, Chem. Rev., 109, 6712, 10.1021/cr9001947 Luo, 2012, Direct visualization of solution morphology of cellulose in ionic liquids by conventional TEM at room temperature, Chem. Commun., 48, 6283, 10.1039/c2cc31483e Zhang, 2016, All-Cellulose Nanocomposites Reinforced with in Situ Retained Cellulose Nanocrystals during Selective Dissolution of Cellulose in an Ionic Liquid, ACS Sustain. Chem. Eng., 4, 4417, 10.1021/acssuschemeng.6b01034 Haverhals, 2012, Fluorescence monitoring of ionic liquid-facilitated biopolymer mobilization and reorganization, Chem. Commun., 48, 6417, 10.1039/c2cc31507f Duchemin, 2009, All-cellulose composites by partial dissolution in the ionic liquid 1-butyl-3-methylimidazolium chloride, Compos. Part A: Appl. Sci. Manuf., 40, 2031, 10.1016/j.compositesa.2009.09.013 Nawaz, 2014, Mixed solvents for cellulose derivatization under homogeneous conditions: kinetic, spectroscopic, and theoretical studies on the acetylation of the biopolymer in binary mixtures of an ionic liquid and molecular solvents, Cellulose, 21, 1193, 10.1007/s10570-014-0184-8 Shibata, 2013, All-cellulose and all-wood composites by partial dissolution of cotton fabric and wood in ionic liquid, Carbohydr. Polym., 98, 1532, 10.1016/j.carbpol.2013.07.062 Rubio-López, 2015, Modelling impact behaviour of all-cellulose composite plates, Compos. Struct., 122, 139, 10.1016/j.compstruct.2014.11.072 Qi, 2008, Effects of temperature and molecular weight on dissolution of cellulose in NaOH/urea aqueous solution, Cellulose, 15, 779, 10.1007/s10570-008-9230-8 Wang, 2012, Ionic liquid processing of cellulose, Chem. Soc. Rev., 41, 1519, 10.1039/c2cs15311d Gupta, 2013, Cellulose regeneration from a cellulose/ionic liquid mixture: the role of anti-solvents, RSC Adv., 3, 12794, 10.1039/c3ra40807h Ouajai, 2009, Preparation, structure and mechanical properties of all-hemp cellulose biocomposites, Compos. Sci. Technol., 69, 2119, 10.1016/j.compscitech.2009.05.005 Zhao, 2009, Novel all-cellulose ecocomposites prepared in ionic liquids, Cellulose, 16, 217, 10.1007/s10570-008-9251-3 Wei, 2016, All-cellulose composites with ultra-high mechanical properties prepared through using straw cellulose fiber, RSC Adv., 6, 93428, 10.1039/C6RA20533J Zhang, 2017, Directly Converting Agricultural Straw into All-Biomass Nanocomposite Films Reinforced with Additional in Situ-Retained Cellulose Nanocrystals, ACS Sustain. Chem. Eng., 5, 5127, 10.1021/acssuschemeng.7b00488 Ma, 2011, Green composite films composed of nanocrystalline cellulose and a cellulose matrix regenerated from functionalized ionic liquid solution, Carbohydr. Polym., 84, 383, 10.1016/j.carbpol.2010.11.050 Qi, 2009, Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution, Biomacromolecules, 10, 1597, 10.1021/bm9001975 Wang, 2011, Impacts of nanowhisker on formation kinetics and properties of all-cellulose composite gels, Carbohydr. Polym., 83, 1937, 10.1016/j.carbpol.2010.10.071 Yang, 2015, Cellulose nanofibrils improve the properties of all-cellulose composites by the nano-reinforcement mechanism and nanofibril-induced crystallization, Nanoscale, 7, 17957, 10.1039/C5NR05511C Fang, 2013, Highly transparent and writable wood all-cellulose hybrid nanostructured paper, J. Mater. Chem. C, 1, 6191, 10.1039/c3tc31331j Zhao, 2014, Reinforcement of all-cellulose nanocomposite films using native cellulose nanofibrils, Carbohydr. Polym., 104, 143, 10.1016/j.carbpol.2014.01.007 Pullawan, 2014, Deformation micromechanics of all-cellulose nanocomposites: comparing matrix and reinforcing components, Carbohydr. Polym., 100, 31, 10.1016/j.carbpol.2012.12.066 Isogai, 2011, TEMPO-oxidized cellulose nanofibers, Nanoscale, 3, 71, 10.1039/C0NR00583E Schuermann, 2013, Prepreg Style Fabrication of All-Cellulose Composites, 19th Int. Conf. Compos. Mater., 5626 Pullawan, 2010, Discrimination of matrix-fibre interactions in all-cellulose nanocomposites, Compos. Sci. Technol., 70, 2325, 10.1016/j.compscitech.2010.09.013 Buleon, 1976, Epitaxial crystallization of cellulose II on Valonia Cellulose, J. Polym. Sci., Part B: Polym. Phys., 14, 1913 Buleon, 1980, Single crystals of cellulose IVII: preparation and properties, J. Polym. Sci., Part B: Polym. Phys., 18, 1209 Sugiyama, 1992, Orientation of cellulose microcrystals by strong magnetic fields, Macromolecules, 25, 4232, 10.1021/ma00042a032 Li, 2010, Magnetic alignment of cellulose nanowhiskers in an all-cellulose composite, Polym. Bull., 65, 635, 10.1007/s00289-010-0276-z Pullawan, 2012, Influence of magnetic field alignment of cellulose whiskers on the mechanics of all-cellulose nanocomposites, Biomacromolecules, 13, 2528, 10.1021/bm300746r Li, 2012, Materials Design of All-Cellulose Composite Using Microstructure Based Finite Element Analysis, J. Eng. Mater. Technol., 134, 10911, 10.1115/1.4005417 Fujisawa, 2016, Orientation control of cellulose nanofibrils in all-cellulose composites and mechanical properties of the films, J. Wood Sci., 62, 174, 10.1007/s10086-015-1533-4 Pullawan, 2013, Orientation and deformation of wet-stretched all-cellulose nanocomposites, J. Mater. Sci., 48, 7847, 10.1007/s10853-013-7404-8 Gindl, 2006, Structural changes during tensile testing of an all-cellulose composite by in situ synchrotron X-ray diffraction, Compos. Sci. Technol., 66, 2639, 10.1016/j.compscitech.2006.03.020 Duchemin, 2007, Phase transformations in microcrystalline cellulose due to partial dissolution, Cellulose, 14, 311, 10.1007/s10570-007-9121-4 Lourdin, 2016, Concentration driven cocrystallisation and percolation in all-cellulose nanocomposites, Cellulose, 23, 529, 10.1007/s10570-015-0805-x Yang, 2010, Reinforcement of ramie fibers on regenerated cellulose films, Compos. Sci. Technol., 70, 2319, 10.1016/j.compscitech.2010.09.012 Qin, 2008, The effect of fibre volume fraction and mercerization on the properties of all-cellulose composites, Carbohydr. Polym., 71, 458, 10.1016/j.carbpol.2007.06.019 Duchemin, 2010, Aerocellulose based on all-cellulose composites, J. Appl. Polym. Sci., 115, 216, 10.1002/app.31111 He, 2014, Uniaxially aligned electrospun all-cellulose nanocomposite nanofibers reinforced with cellulose nanocrystals: scaffold for tissue engineering, Biomacromolecules, 15, 618, 10.1021/bm401656a Vallejos, 2012, All-Cellulose Composite Fibers Obtained by Electrospinning Dispersions of Cellulose Acetate and Cellulose Nanocrystals, J. Polym. Environ., 20, 1075, 10.1007/s10924-012-0499-1 Alcalá, 2013, All-cellulose composites from unbleached hardwood kraft pulp reinforced with nanofibrillated cellulose, Cellulose, 20, 2909, 10.1007/s10570-013-0085-2 Sun, 2015, Comparison of highly transparent all-cellulose nanopaper prepared using sulfuric acid and TEMPO-mediated oxidation methods, Cellulose, 22, 1123, 10.1007/s10570-015-0574-6 Arévalo, 2016, Binderless all-cellulose fibreboard from microfibrillated lignocellulosic natural fibres, Compos. Part A: Appl. Sci. Manuf., 83, 38, 10.1016/j.compositesa.2015.11.027 Goutianos, 2014, Effect of processing conditions on fracture resistance and cohesive laws of binderfree all-cellulose composites, Appl. Compos. Mater., 21, 805, 10.1007/s10443-013-9381-0 Nilsson, 2010, A non-solvent approach for high-stiffness all-cellulose biocomposites based on pure wood cellulose, Compos. Sci. Technol., 70, 1704, 10.1016/j.compscitech.2010.06.016 Codou, 2015, Partial periodate oxidation and thermal cross-linking for the processing of thermoset all-cellulose composites, Compos. Sci. Technol., 117, 54, 10.1016/j.compscitech.2015.05.022 Mashkour, 2014, Strong highly anisotropic magnetocellulose nanocomposite films made by chemical peeling and in situ welding at the interface using an ionic liquid, ACS Appl. Mater. Interfaces., 6, 8165, 10.1021/am500709t Yousefi, 2013, Water-repellent all-cellulose nanocomposite using silane coupling treatment, J. Adhes. Sci. Technol., 27, 1324, 10.1080/01694243.2012.695954 Ahn, 2016, Viscoelastic characteristics of all cellulose suspension and nanocomposite, Carbohydr. Polym., 151, 119, 10.1016/j.carbpol.2016.05.059 Vo, 2013, All-cellulose composites from woven fabrics, Compos. Sci. Technol., 78, 30, 10.1016/j.compscitech.2013.01.018 Chen, 2013, Cellulose diacetate reinforced with electrospun cellulose fiber: a new route to prepare an all cellulose-based composite, Compos. Part A: Appl. Sci. Manuf., 53, 10, 10.1016/j.compositesa.2013.05.014 Hooshmand, 2014, All-cellulose nanocomposite fibers produced by melt spinning cellulose acetate butyrate and cellulose nanocrystals, Cellulose, 21, 2665, 10.1007/s10570-014-0269-4 Cao, 2016, Water-soluble cellulose acetate from waste cotton fabrics and the aqueous processing of all-cellulose composites, Carbohydr. Polym., 149, 60, 10.1016/j.carbpol.2016.04.086 Ou, 2012, Solid biopolymer electrolytes based on all-cellulose composites prepared by partially dissolving cellulosic fibers in the ionic liquid 1-butyl-3- methylimidazolium chloride, J. Mater. Sci., 47, 5978, 10.1007/s10853-012-6502-3 Huang, 2016, Fabrication of flexible self-standing all-cellulose nanofibrous composite membranes for virus removal, Carbohydr. Polym., 143, 9