Cảm biến amoniac (NH3) dựa trên polyaniline nhạy bén và chọn lọc với kỹ thuật in phun khí: con đường hướng tới phát hiện khí với chi phí thấp và tiêu thụ năng lượng thấp

Journal of Materials Science - Tập 56 - Trang 12596-12606 - 2021
Christine Fisher1,2, Bruce J. Warmack3, Yongchao Yu4,5, Lydia N. Skolrood1,6, Kai Li1, Pooran C. Joshi3, Tomonori Saito1, Tolga Aytug
1Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, USA
2Department of Chemistry, Virginia Tech, Blacksburg, USA
3Electrification and Energy Infrastructures Division, Oak Ridge National Laboratory, Oak Ridge, USA
4Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, USA
5Manufacturing Science Division, Oak Ridge National Laboratory, Knoxville, USA
6Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, USA

Tóm tắt

Chúng tôi báo cáo thiết kế và sản xuất mở rộng một cảm biến khí amoniac (NH3) dựa trên polyaniline (PANI) có chi phí thấp và tiêu thụ năng lượng thấp trên nền polyimide (PI) bằng cách sử dụng các kỹ thuật sản xuất bổ sung. Các mảng điện cực xen kẽ bạc (IDE) và phim polymer dẫn điện được in lên PI bằng công nghệ in trực tiếp khí aerosol. Các đặc điểm hình thái học được kiểm tra bằng kính hiển vi điện tử quét và phân tích tia X tán xạ năng lượng, cho thấy phim PANI được in đồng nhất trên nền IDE. Hiệu suất cảm biến khí được đánh giá trong phạm vi phát hiện rò rỉ sớm phân tích từ 5–1000 ppm NH3 trong không khí tùy thuộc vào cả nhiệt độ (23 °C, 50 °C, 80 °C) và độ ẩm tương đối (RH = 0%, 30%, 50%). Cảm biến cho thấy độ nhạy xuống đến 5 ppm NH3 với giới hạn phát hiện dưới ppm và độ lặp lại tốt. Chúng tôi quan sát thấy việc phát hiện NH3 nhanh chóng ở 0% RH với thời gian ổn định và phục hồi rất lâu. Tuy nhiên, ở cả 30 và 50% RH, thời gian phản ứng và phục hồi ở nhiệt độ phòng giảm xuống chỉ còn khoảng 1 phút và 5 phút, tương ứng. Các thí nghiệm cũng cho thấy độ nhạy tốt đối với phân tích ngay cả ở các nhiệt độ hoạt động cao hơn. Kết quả hiện tại xứng đáng với ứng dụng thực tiễn của các cảm biến in phun khí tiêu thụ năng lượng thấp trong các ứng dụng công nghiệp, nơi phát hiện khí độc mức thấp là rất cần thiết.

Từ khóa

#cảm biến khí #amoniac #polyaniline #in phun khí #sản xuất bổ sung #độ nhạy #độ ẩm tương đối

Tài liệu tham khảo

Stratospheric Ozone Protection. U.S. Code, § 7671. Title 42, 2000. United States Environmental Protection Agency. Phaseout of Class II Ozone-Depleting Substances https://www.epa.gov/ods-phaseout/phaseout-class-ii-ozone-depleting-substances. Francis C, Maidment G, Davies G (2017) An investigation of refrigerant leakage in commercial refrigeration. Int J Refrig 74:12–21. https://doi.org/10.1016/j.ijrefrig.2016.10.009 Koronaki IP, Cowan D, Maidment G, Beerman K, Schreurs M, Kaar K, Chaer I, Gontarz G, Christodoulaki RI, Cazauran X (2012) Refrigerant emissions and leakage prevention across Europe – results from the realskillseurope project. Energy 45(1):71–80. https://doi.org/10.1016/j.energy.2012.05.040 Beshr M, Aute V, Sharma V, Abdelaziz O, Fricke B, Radermacher R (2015) A comparative study on the environmental impact of supermarket refrigeration systems using low GWP refrigerants. Int J Refrig 56:154–164. https://doi.org/10.1016/j.ijrefrig.2015.03.025 Joshi, P. Peel and Stick Sensor for Refrigerant Leak Detection https://www.energy.gov/sites/prod/files/2019/05/f62/bto-peer-2019-ornl-peel-stick-sensor-refrig-leak-det.pdf. Pearson A (2008) Refrigeration with ammonia. Int J Refrig 31(4):545–551. https://doi.org/10.1016/j.ijrefrig.2007.11.011 Harby K (2017) Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants: an updated overview. Renew Sustain Energy Rev 73:1247–1264. https://doi.org/10.1016/j.rser.2017.02.039 Daniel, J. S.; Velders , G. J. M. Halocarbon Scenarios, Ozone Depletion Potentials, and Global Warming Potentials. In Scientific Assessment of Zzone Depletion: 2006; Global Ozone Research and Monitoring Project; World Meteorological Organization: Geneva, Switzerland, 2007; Vol. 50, pp 8.1–8.39. Pandey S (2016) Highly sensitive and selective chemiresistor gas/vapor sensors based on polyaniline nanocomposite: a comprehensive review. J Sci Adv Mater Devices 1(4):431–453. https://doi.org/10.1016/j.jsamd.2016.10.005 Tanguy NR, Thompson M, Yan N (2018) A review on advances in application of polyaniline for ammonia detection. Sens Actuators B Chem 257:1044–1064. https://doi.org/10.1016/j.snb.2017.11.008 Fratoddi I, Venditti I, Cametti C, Russo MV (2015) Chemiresistive polyaniline-based gas sensors: a mini review. Sens Actuators B Chem 220:534–548. https://doi.org/10.1016/j.snb.2015.05.107 Molapo KM, Ndangili PM, Ajayi RF, Mbambisa G, Mailu SM, Njomo N, Masikini M, Baker P, Iwuoha EI (2012) Electronics of conjugated polymers (I): polyaniline. Int J Electrochem Sci 7:11859–11875 Liao G, Li Q, Xu Z (2019) The chemical modification of polyaniline with enhanced properties: a review. Prog Org Coat 126:35–43. https://doi.org/10.1016/j.porgcoat.2018.10.018 Crowley K, Morrin A, Hernandez A, O’Malley E, Whitten PG, Wallace GG, Smyth MR, Killard AJ (2008) Fabrication of an ammonia gas sensor using inkjet-printed polyaniline nanoparticles. Talanta 77(2):710–717. https://doi.org/10.1016/j.talanta.2008.07.022 Rizzo G, Arena A, Donato N, Latino M, Saitta G, Bonavita A, Neri G (2010) Flexible, all-organic ammonia sensor based on dodecylbenzene sulfonic acid-doped polyaniline films. Thin Solid Films 518(23):7133–7137. https://doi.org/10.1016/j.tsf.2010.07.016 Crowley K, O’Malley E, Morrin A, Smyth MR, Killard AJ (2008) An Aqueous ammonia sensor based on an inkjet-printed polyaniline nanoparticle-modified electrode. Analyst 133(3):391–399. https://doi.org/10.1039/B716154A Huang Q, Zhu Y (2019) Printing Conductive Nanomaterials for Flexible and Stretchable Electronics: A Review of Materials, Processes, and Applications. Adv Mater Technol 4(5):1800546. https://doi.org/10.1002/admt.201800546 Kuswandi B, Jayus M, Restyana A, Abdullah A, Heng LY, Ahmad MA (2012) Novel colorimetric food package label for fish spoilage based on polyaniline film. Food Control 25(1):184–189. https://doi.org/10.1016/j.foodcont.2011.10.008 Le Maout P, Wojkiewicz JL, Redon N, Lahuec C, Seguin F, Dupont L, Mikhaylov S, Noskov Y, Ogurtsov N, Pud A (2018) Polyaniline nanocomposites based sensor array for breath ammonia analysis. Portable e-Nose approach to non-invasive diagnosis of chronic kidney disease. Sens Actuators B Chem 274:616–626. https://doi.org/10.1016/j.snb.2018.07.178 Haynes, A.; Gouma, P.-I. Polyaniline-Based Environmental Gas Sensors. In Sensors for Environment, Health and Security; Baraton, M.I., Ed.; NATO Science for Peace and Security Series C: Environmental Security; Springer Netherlands: Dordrecht, 2009; pp 451–459. https://doi.org/https://doi.org/10.1007/978-1-4020-9009-7_30. Moulton SE, Innis PC, Kane-Maguire LAP, Ngamna O, Wallace GG (2004) Polymerisation and characterisation of conducting polyaniline nanoparticle dispersions. Curr Appl Phys 4(2):402–406. https://doi.org/10.1016/j.cap.2003.11.059 Ngamna O, Morrin A, Killard AJ, Moulton SE, Smyth MR, Wallace GG (2007) Inkjet printable polyaniline nanoformulations. Langmuir ACS J Surf Colloids 23(16):8569–8574. https://doi.org/10.1021/la700540g Huang, J.; Kaner, R. B. Polyaniline nanofibers: Syntheses, properties, and applications. In Conjugated Polymers: Theory, Synthesis, Properties, and Characterization; CRC Press: Boca Raton, FL, 2007; Vol. 1, pp 7.1–7.49. Deshpande NG, Gudage YG, Sharma R, Vyas JC, Kim JB, Lee YP (2009) Studies on tin oxide-intercalated polyaniline nanocomposite for ammonia gas sensing applications. Sens Actuators B Chem 138(1):76–84. https://doi.org/10.1016/j.snb.2009.02.012 Tai H, Jiang Y, Xie G, Yu J (2010) Preparation, characterization and comparative NH3-sensing characteristic studies of pani/inorganic oxides nanocomposite thin films. J Mater Sci Technol 26(7):605–613. https://doi.org/10.1016/S1005-0302(10)60093-X Gavgani JN, Hasani A, Nouri M, Mahyari M, Salehi A (2016) Highly sensitive and flexible ammonia sensor based on S and N Co-doped graphene quantum dots/polyaniline hybrid at room temperature. Sens Actuators B Chem 229:239–248. https://doi.org/10.1016/j.snb.2016.01.086 Pang Z, Yang Z, Chen Y, Zhang J, Wang Q, Huang F, Wei Q (2016) A room temperature ammonia gas sensor based on cellulose/TiO2/PANI composite nanofibers. Colloids Surf Physicochem Eng Asp 494:248–255. https://doi.org/10.1016/j.colsurfa.2016.01.024 Li J, Lu Y, Ye Q, Cinke M, Han J, Meyyappan M (2003) Carbon Nanotube sensors for gas and organic vapor detection. Nano Lett 3(7):929–933. https://doi.org/10.1021/nl034220x Currie LA (1999) Nomenclature in evaluation of analytical methods including detection and quantification capabilities: (IUPAC recommendations 1995). Anal Chim Acta 391(2):105–126. https://doi.org/10.1016/S0003-2670(99)00104-X Grigore L, Petty MC (2003) Polyaniline films deposited by anodic polymerization: properties and applications to chemical sensing. J Mater Sci Mater Electron 14(5):389–392. https://doi.org/10.1023/A:1023908903260 Kumar L, Rawal I, Kaur A, Annapoorni S (2017) Flexible room temperature ammonia sensor based on polyaniline. Sens Actuators B Chem 240:408–416. https://doi.org/10.1016/j.snb.2016.08.173 Kulkarni MV, Apte SK, Naik SD, Ambekar JD, Kale BB (2013) Ink-Jet printed conducting polyaniline based flexible humidity sensor. Sens Actuators B Chem 178:140–143. https://doi.org/10.1016/j.snb.2012.12.046 Zhang Y, Duan Y, Liu J (2017) The effect of intermolecular hydrogen bonding on the polyaniline water complex. J Clust Sci 28(3):1071–1081. https://doi.org/10.1007/s10876-016-1104-x Kulkarni MV, Viswanath AK (2007) Sulphonic acids doped Poly(N-Ethyl Aniline): a material for humidity sensing application. Polym Eng Sci 47(10):1621–1629. https://doi.org/10.1002/pen.20838 Mikhaylov S, Ogurtsov N, Noskov Y, Redon N, Coddeville P, Wojkiewicz JL, Pud A (2015) Ammonia/Amine electronic gas sensors based on hybrid Polyaniline–TiO2 nanocomposites. The effects of titania and the surface active doping acid. RSC Adv. 5(26):20218–20226. https://doi.org/10.1039/C4RA16121A Wang J, Chan S, Carlson RR, Luo Y, Ge G, Ries RS, Heath JR, Tseng H-R (2004) Electrochemically fabricated polyaniline nanoframework electrode junctions that function as resistive sensors. Nano Lett 4(9):1693–1697. https://doi.org/10.1021/nl049114p Cho S, Lee JS, Joo H (2019) Recent developments of the solution-processable and highly conductive polyaniline composites for optical and electrochemical applications. Polymers 11(12):1965. https://doi.org/10.3390/polym11121965 Yue J, Epstein AJ, Zhong Z, Gallagher PK, Macdiarmid AG (1991) Thermal stabilities of polyanilines. Synth Met 41(1–2):765–768. https://doi.org/10.1016/0379-6779(91)91180-I Chen T, Dong C, Li X, Gao J (2009) Thermal degradation mechanism of dodecylbenzene sulfonic acid- hydrochloric acid co-doped polyaniline. Polym Degrad Stab 94(10):1788–1794. https://doi.org/10.1016/j.polymdegradstab.2009.06.011 Patil PT, Anwane RS, Kondawar SB (2015) Development of Electrospun Polyaniline/ZnO composite nanofibers for LPG sensing. Procedia Mater Sci 10:195–204. https://doi.org/10.1016/j.mspro.2015.06.041 Sharma HJ, Jamkar DV, Kondawar SB (2015) Electrospun nanofibers of conducting Polyaniline/Al-SnO2 composites for hydrogen sensing applications. Procedia Mater Sci 10:186–194. https://doi.org/10.1016/j.mspro.2015.06.040 Šeděnková I, Trchová M, Stejskal J (2008) Thermal degradation of polyaniline films prepared in solutions of strong and weak acids and in water – FTIR and raman spectroscopic studies. Polym Degrad Stab 93(12):2147–2157. https://doi.org/10.1016/j.polymdegradstab.2008.08.007