All-Si valley-Hall photonic topological insulator

New Journal of Physics - Tập 18 Số 2 - Trang 025012 - 2016
Tzuhsuan Ma1, Gennady Shvets1
1Department of Physics, The University of Texas at Austin, Austin, TX 78712, USA

Tóm tắt

Abstract An all-Si photonic structure emulating the quantum-valley-Hall effect is proposed. We show that it acts as a photonic topological insulator (PTI), and that an interface between two such PTIs can support edge states that are free from scattering. The conservation of the valley degree of freedom enables efficient in- and out-coupling of light between the free space and the photonic structure. The topological protection of the edge waves can be utilized for designing arrays of resonant time-delay photonic cavities that do not suffer from reflections and cross-talk.

Từ khóa


Tài liệu tham khảo

Wang, 2008, Reflection-free one-way edge modes in a gyromagnetic photonic crystal, Phys. Rev. Lett., 100, 10.1103/PhysRevLett.100.013905

Wang, 2009, Observation of unidirectional backscattering-immune topological electromagnetic states, Nature, 461, 772, 10.1038/nature08293

Hafezi, 2011, Robust optical delay lines with topological protection, Nat. Phys., 7, 907, 10.1038/nphys2063

Hafezi, 2013, Imaging topological edge states in silicon photonics, Nat. Photon., 7, 1001, 10.1038/nphoton.2013.274

Rechtsman, 2013, Photonic floquet topological insulators, Nature, 496, 196, 10.1038/nature12066

Khanikaev, 2013, Photonic topological insulators, Nat. Mater., 12, 233, 10.1038/nmat3520

Chen, 2014, Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide, Nat. Commun., 5, 5782, 10.1038/ncomms6782

Gao, 2015, Topological photonic phase in chiral hyperbolic metamaterials, Phys. Rev. Lett., 114, 10.1103/PhysRevLett.114.037402

Liu, 2015, Gauge field optics with anisotropic media, Phys. Rev. Lett., 114, 10.1103/PhysRevLett.114.103902

Ma, 2015, Guiding electromagnetic waves around sharp corners: topologically protected photonic transport in metawaveguides, Phys. Rev. Lett., 114, 10.1103/PhysRevLett.114.127401

Lu, 2014, Topological photonics, Nat. Photon., 8, 821, 10.1038/nphoton.2014.248

Kane, 2005, Quantum spin Hall effect in graphene, Phys. Rev. Lett., 95, 10.1103/PhysRevLett.95.226801

König, 2007, Quantum spin Hall insulator state in HgTe quantum wells, Science, 318, 766, 10.1126/science.1148047

Bernevig, 2006, Quantum spin Hall effect, Phys. Rev. Lett., 96, 10.1103/PhysRevLett.96.106802

Fu, 2007, Topological insulators in three dimensions, Phys. Rev. Lett., 98, 10.1103/PhysRevLett.98.106803

Hsieh, 2008, A topological Dirac insulator in a quantum spin Hall phase, Nature, 452, 970, 10.1038/nature06843

Roth, 2009, Nonlocal transport in the quantum spin Hall state, Science, 325, 294, 10.1126/science.1174736

Zhang, 2009, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nat. Phys., 5, 438, 10.1038/nphys1270

Chen, 2009, Experimental realization of a three-dimensional topological insulator, Bi2Te3, Science, 325, 178, 10.1126/science.1173034

Xia, 2009, Observation of a large-gap topological-insulator class with a single Dirac cone on the surface, Nat. Phys., 5, 398, 10.1038/nphys1274

Ma, 2015, Scattering-free optical edge states between heterogeneous photonic topological insulators

Rycerz, 2007, Valley filter and valley valve in graphene, Nat. Phys., 3, 172, 10.1038/nphys547

Xiao, 2007, Valley-contrasting physics in graphene: magnetic moment and topological transport, Phys. Rev. Lett., 99, 10.1103/PhysRevLett.99.236809

Yao, 2008, Valley-dependent optoelectronics from inversion symmetry breaking, Phys. Rev. B, 77, 10.1103/PhysRevB.77.235406

Zhang, 2009, Direct observation of a widely tunable bandgap in bilayer graphene, Nature, 459, 820, 10.1038/nature08105

Ju, 2015, Topological valley transport at bilayer graphene domain walls, Nature, 520, 650, 10.1038/nature14364

Kim, 2014, Topological domain walls and quantum valley hall effects in silicene, Phys. Rev. B, 89, 10.1103/PhysRevB.89.085429

Wu, 2015, Scheme for achieving a topological photonic crystal by using dielectric material, Phys. Rev. Lett., 114, 10.1103/PhysRevLett.114.223901

Szameit, 2011, PT-symmetry in honeycomb photonic lattices, Phys. Rev. A, 84, 10.1103/PhysRevA.84.021806

Malterre, 2011, Symmetry breaking and gap opening in two-dimensional hexagonal lattices, New J. Phys., 13, 10.1088/1367-2630/13/1/013026

Ezawa, 2013, Topological Kirchhoff law and bulk-edge correspondence for valley Chern and spin-valley Chern numbers, Phys. Rev. B, 88, 10.1103/PhysRevB.88.161406

Pozar, 2011, 4th edn

Yang, 2011, Time-reversal-symmetry-broken quantum spin Hall effect, Phys. Rev. Lett., 107, 10.1103/PhysRevLett.107.066602

Thouless, 1982, Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett., 49, 405, 10.1103/PhysRevLett.49.405

Simon, 1983, Holonomy, the quantum adiabatic theorem, and Berry’s phase, Phys. Rev. Lett., 51, 2167, 10.1103/PhysRevLett.51.2167

Sheng, 2006, Quantum spin-Hall effect and topologically invariant Chern numbers, Phys. Rev. Lett., 97, 10.1103/PhysRevLett.97.036808

Mong, 2011, Edge states and the bulk-boundary correspondence in Dirac Hamiltonians, Phys. Rev.B, 83, 10.1103/PhysRevB.83.125109

Dresselhaus, 1996

Xia, 2007, Ultracompact optical buffers on a silicon chip, Nat. Photon., 1, 65, 10.1038/nphoton.2006.42