Oxit graphene biến tính bằng phosphat alkyl như phụ gia giảm ma sát và mài mòn trong dầu

Journal of Materials Science - Tập 54 - Trang 4626-4636 - 2018
Lei Zhang1,2, Yi He1,3, Lin Zhu1, Zhilin Jiao4, Weizhou Deng4, Caiping Pu4, Chunmei Han4, Shan Tang4
1College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People’s Republic of China
2Civil Aviation Flight University of China, Deyang, People’s Republic of China
3Chengdu Evermaterials Co., Ltd, Chengdu, People’s Republic of China
4PetroChina Chengdu Lubricant Company, Chengdu, People’s Republic of China

Tóm tắt

Đã thành công trong việc tổng hợp oxit graphene biến tính bằng phosphat alkyl (GON-DDP) sử dụng dodecanol, ethanol amine và oxit graphene (GO) tự chế làm tiền chất. Cấu trúc và hình thái của GON-DDP đã được xác định bằng các phương pháp FT-IR, XPS, TG/DSC, SEM và TEM. Kết quả xác định cho thấy các chuỗi phosphat alkyl dài đã được gắn thành công trên bề mặt GO, điều này đảm bảo khả năng phân tán của GON-DDP trong dầu nền hydroisomer hóa dewax (VHVI8). Sau đó, các tính chất ma sát của GON-DDP với vai trò là phụ gia giảm ma sát và chống mài mòn trong VHVI8 đã được đánh giá trên máy thử bốn quả cầu và hệ thống thử nghiệm SRV. Kết quả cho thấy hệ số ma sát và đường kính vết mài mòn đã giảm lần lượt 22,7% và 30,3% so với dầu nền VHVI8 nguyên bản. Hơn nữa, tải trọng không bị kẹt của VHVI8 đã được nâng lên đáng kể bằng cách thêm GON-DDP. Cuối cùng, cơ chế bôi trơn đã được đề xuất dựa trên phân tích Raman trên bề mặt bị mài mòn của các quả cầu thép.

Từ khóa

#Oxit graphene #phosphat alkyl #phụ gia giảm ma sát #mài mòn #dầu nền #VHVI8

Tài liệu tham khảo

Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y (2004) Electric field effect in atomically thin carbon films. Science 306:666. https://doi.org/10.1126/science.1102896 Stankovich S, Dikin DA, Dommett GH et al (2006) Graphene-based composite materials. Nature 442:282. https://doi.org/10.1038/nature04969 Wintterlin J, Bocquet ML (2009) Graphene on metal surfaces. Surf Sci 603:1841. https://doi.org/10.1016/j.susc.2008.08.037 Ramanathan T, Abdala AA, Stankovich S et al (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nano 3:327. https://doi.org/10.1038/nnano.2008.96 Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nano 4:217. https://doi.org/10.1038/nnano.2009.58 Zhang Y, Tan Y-W, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201. https://doi.org/10.1038/nature04235 Berger C, Song Z, Li T et al (2004) Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 108:19912. https://doi.org/10.1021/jp040650f Eswaraiah V, Balasubramaniam K, Ramaprabhu S (2011) Functionalized graphene reinforced thermoplastic nanocomposites as strain sensors in structural health monitoring. J Mater Chem 21:12626. https://doi.org/10.1039/C1JM12302E Gutierrez-Gonzalez CF, Smirnov A, Centeno A et al (2015) Wear behavior of graphene/alumina composite. Ceram Int 41:7434. https://doi.org/10.1016/j.ceramint.2015.02.061 Zhang L, Pu J, Wang L, Xue Q (2014) Frictional dependence of graphene and carbon nanotube in diamond-like carbon/ionic liquids hybrid films in vacuum. Carbon 80:734. https://doi.org/10.1016/j.carbon.2014.09.022 Eswaraiah V, Sankaranarayanan V, Ramaprabhu S (2011) Functionalized graphene–PVDF foam composites for EMI shielding. Macromol Mater Eng 296:894. https://doi.org/10.1002/mame.201100035 Holmberg K, Andersson P, Erdemir A (2012) Global energy consumption due to friction in passenger cars. Tribol Int 47:221. https://doi.org/10.1016/j.triboint.2011.11.022 Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294. https://doi.org/10.1038/nature11475 Berman D, Erdemir A, Sumant AV (2014) Graphene: a new emerging lubricant. Mater Today 17:31. https://doi.org/10.1016/j.mattod.2013.12.003 Wang X, Zhi L, Müllen K (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8:323. https://doi.org/10.1021/nl072838r Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385. https://doi.org/10.1126/science.1157996 Porwal H, Tatarko P, Saggar R et al (2014) Tribological properties of silica–graphene nano-platelet composites. Ceram Int 40:12067. https://doi.org/10.1016/j.ceramint.2014.04.046 Lee C, Li Q, Kalb W et al (2010) Frictional characteristics of atomically thin sheets. Science 328:76. https://doi.org/10.1126/science.1184167 Choudhary S, Mungse HP, Khatri OP (2012) Dispersion of alkylated graphene in organic solvents and its potential for lubrication applications. J Mater Chem 22:21032. https://doi.org/10.1039/c2jm34741e Zhi-Lin Cheng WL, Pei-Rong Wu, Liu Zan (2017) A strategy for preparing modified graphene oxide with good dispersibility and transparency in oil. Ind Eng Chem Res 56:5527–5534. https://doi.org/10.1021/acs.iecr.7b01472 Cheng Z-L, Li Y-X, Liu Z (2017) Novel adsorption materials based on graphene oxide/Beta zeolite composite materials and their adsorption performance for rhodamine B. J Alloys Compd 708:255. https://doi.org/10.1016/j.jallcom.2017.03.004 Zhang L, He Y, Zhu L, Yang C, Niu Q, An C (2017) In situ alkylated graphene as oil dispersible additive for friction and wear reduction. Ind Eng Chem Res 56:9029. https://doi.org/10.1021/acs.iecr.7b01338 Zhang J, Spikes H (2016) On the mechanism of ZDDP antiwear film formation. Tribol Lett 63:24. https://doi.org/10.1007/s11249-016-0706-7 Li H, Somers AE, Rutland MW, Howlett PC, Atkin R (2016) Combined nano- and macrotribology studies of titania lubrication using the oil-ionic liquid mixtures. ACS Sustainable Chem. Eng. 4:5005. https://doi.org/10.1021/acssuschemeng.6b01383 Qu J, Barnhill William C, Luo H et al (2015) Synergistic effects between phosphonium-alkylphosphate ionic liquids and zinc dialkyldithiophosphate (ZDDP) as lubricant additives. Adv Mater 27:4767. https://doi.org/10.1002/adma.201502037 William JBY, Hummers S, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339 Mungse OPSHP, Sugimura H, Khatri OP (2014) Hydrothermal deoxygenation of graphene oxide in sub- and supercritical water. RSC Adv 4:22589. https://doi.org/10.1039/C4RA01085J Zhang L, He Y, Feng S et al (2016) Preparation and tribological properties of novel boehmite/graphene oxide nano-hybrid. Ceram Int 42:6178. https://doi.org/10.1016/j.ceramint.2015.12.178 Wang A, Li X, Zhao Y, Wu W, Chen J, Meng H (2014) Preparation and characterizations of Cu2O/reduced graphene oxide nanocomposites with high photo-catalytic performances. Powder Technol 261:42. https://doi.org/10.1016/j.powtec.2014.04.004 Zhang K, Zhang LL, Zhao XS, Wu J (2010) Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater 22:1392. https://doi.org/10.1021/cm902876u Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS (2011) Hydrazine-reduction of graphite-and graphene oxide. Carbon 49:3019. https://doi.org/10.1016/j.carbon.2011.02.071 Wang G, Yang Z, Li X, Li C (2005) Synthesis of poly(aniline-co-o-anisidine)-intercalated graphite oxide composite by delamination/reassembling method. Carbon 43:2564. https://doi.org/10.1016/j.carbon.2005.05.008 Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477. https://doi.org/10.1021/jp9731821 Stankovich S, Dikin DA, Piner RD et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558. https://doi.org/10.1016/j.carbon.2007.02.034