Tập hợp phân tử do Alkoxy-silyl kích thích: Một cách tiếp cận mới để loại bỏ vi nhựa bền vững khỏi hệ thống nước

Journal of Polymers and the Environment - Tập 26 - Trang 4258-4270 - 2018
Adrian Frank Herbort1, Michael Toni Sturm1, Simone Fiedler1, Golnar Abkai1, Katrin Schuhen1
1Institute for Environmental Sciences Landau, University of Koblenz – Landau, Landau, Germany

Tóm tắt

Lớp chất của các tác nhân hóa học hữu cơ trơ (IOCS) mô tả các phân tử hóa học hữu cơ (macro-) có độ bền cao khi xâm nhập vào hệ sinh thái, và quá trình phân hủy của chúng bị hạn chế. Những macromolecule hóa học hữu cơ tổng hợp này, thường có nguồn gốc từ quá trình polyme hóa nhiều monomer khác nhau, dưới hình thức nhựa, là không thể thiếu trong cuộc sống hàng ngày. Chúng xâm nhập vào các thành phần môi trường và gây thiệt hại lớn do sự xâm nhập ban đầu (ngành công nghiệp, mỹ phẩm, giặt giũ vải), và thứ cấp (phân hủy). Nếu những hạt này vào hệ thống nước, điều này có những hậu quả nghiêm trọng đối với hệ sinh thái như cái chết của động vật biển, hoặc tích tụ sinh học. Các nhà máy xử lý nước thải đang gặp phải giới hạn của chúng và cần những ý tưởng đổi mới cho việc loại bỏ vi nhựa một cách bền vững. Bài viết này xem xét một phương pháp mới để loại bỏ polymer khỏi các hệ thống nước (quy mô phòng thí nghiệm) bằng cách sử dụng các phản ứng kết tụ do sol-gel kích thích để tạo thành các khối hạt lớn hơn. Các khối hạt mở rộng này có thể được tách ra dễ dàng hơn nhiều khỏi nước thải, vì chúng nổi trên bề mặt nước. Các hệ thống tách biệt, ví dụ như bẫy cát, có thể dễ dàng được sử dụng. Một lợi điểm nữa là quá trình kết tụ có thể được thực hiện hoàn toàn độc lập với loại, kích cỡ và lượng nồng độ chất lạ cũng như các tác động bên ngoài (giá trị pH, nhiệt độ, áp suất). Do đó, loại tách biệt hạt mới này không chỉ có thể được sử dụng trong các nhà máy xử lý nước thải, mà còn có thể được chuyển giao cho các hệ thống phân tán (ví dụ như thực hiện trong các quy trình công nghiệp).

Từ khóa

#vi nhựa; tác nhân hóa học trơ hữu cơ; hệ sinh thái; xử lý nước thải; kết tụ; phân tách hạt; quy trình công nghiệp

Tài liệu tham khảo

PlasticsEurope (2013) Plastics—the Facts 2013—An analysis of European latest plastics production, demand and waste data. http://www.plasticseurope.org/documents/document/20131014095824-final_plastics_the_facts_2013_published_october2013.pdf. Accessed 02 Mar 2017 PlasticsEurope (2016) Plastics—the Facts 2016—An analysis of European plastics production, demand and waste data. http://www.plasticseurope.org/documents/document/20161014113313-plastics_the_facts_2016_final_version.pdf. Accessed 02 Mar 2017 Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62(8):1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030 Förtsch G, Meinholz H (2014) Handbuch betrieblicher Gewässerschutz. Springer, Wiesbaden Heinonen M, Talvitie J (2014) Preliminary study on synthetic microfibers and particles at a municipal waste water treatment plant. Baltic Marine Environment Protection Commission, Helsinki Magnusson K, Nóren F (2014) Screening of microplastic particles in and downstream a wastewater treatment plant. IVL Swedish Environmental Research Institute, Stockholm Murphy F, Ewins C, Carbonnier F et al (2016) Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environ Sci Technol 50(11):5800–5808. https://doi.org/10.1021/acs.est.5b05416 Mintenig SM, Int-Veen I, Loder MGJ et al (2016) Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Res 108:365–372. https://doi.org/10.1016/j.watres.2016.11.015 Browne MA, Crump P, Niven SJ et al (2011) Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ Sci Technol 45(21):9175–9179. https://doi.org/10.1021/es201811s Estahbanati S, Fahrenfeld NL (2016) Influence of wastewater treatment plant discharges on microplastic concentrations in surface water. Chemosphere 162:277–284. https://doi.org/10.1016/j.chemosphere.2016.07.083 Rochman CM, Kross SM, Armstrong JB et al (2015) Scientific evidence supports a ban on microbeads. Environ Sci Technol 49(18):10759–10761. https://doi.org/10.1021/acs.est.5b03909 MSFD GES Technical Subgroup on Marine Litter (2011) Marine litter: Technical recommendations for the implementation of MSFD requirements. EUR (Luxembourg. Online), vol 25009. Publications Office, Luxembourg Commission European (2011) Commission recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU). Off J Eur Union L275:38–40 Duis K, Coors A (2016) Microplastics in the aquatic and terrestrial environment: Sources (with a specific focus on personal care products), fate and effects. Environ Sci Eur 28(1):1240. https://doi.org/10.1186/s12302-015-0069-y Dudgeon D, Arthington AH, Gessner MO et al (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev Camb Philos Soc 81(2):163–182. https://doi.org/10.1017/S1464793105006950 Wagner M, Scherer C, Alvarez-Muñoz D et al (2014) Microplastics in freshwater ecosystems: what we know and what we need to know. Environ Sci Eur 26(1):1977. https://doi.org/10.1186/s12302-014-0012-7 Wang W, Ndungu AW, Li Z et al (2016) Microplastics pollution in inland freshwaters of China: a case study in urban surface waters of Wuhan, China. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2016.09.213 Eerkes-Medrano D, Thompson RC, Aldridge DC (2015) Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res 75:63–82. https://doi.org/10.1016/j.watres.2015.02.012 Driedger AG, Dürr HH, Mitchell K et al (2015) Plastic debris in the Laurentian Great Lakes: a review. J Great Lakes Res 41(1):9–19. https://doi.org/10.1016/j.jglr.2014.12.020 Su L, Xue Y, Li L et al (2016) Microplastics in Taihu Lake, China. Environ Pollut 216:711–719. https://doi.org/10.1016/j.envpol.2016.06.036 Zhang K, Su J, Xiong X et al (2016) Microplastic pollution of lakeshore sediments from remote lakes in Tibet plateau, China. Environ Pollut. https://doi.org/10.1016/j.envpol.2016.05.048 Free CM, Jensen OP, Mason SA et al (2014) High-levels of microplastic pollution in a large, remote, mountain lake. Mar Pollut Bull 85(1):156–163. https://doi.org/10.1016/j.marpolbul.2014.06.001 Horton AA, Svendsen C, Williams RJ et al (2016) Large microplastic particles in sediments of tributaries of the River Thames, UK—Abundance, sources and methods for effective quantification. Mar Pollut Bull. https://doi.org/10.1016/j.marpolbul.2016.09.004 Fischer EK, Paglialonga L, Czech E et al (2016) Microplastic pollution in lakes and lake shoreline sediments—a case study on Lake Bolsena and Lake Chiusi (central Italy). Environ Pollut 213:648–657. https://doi.org/10.1016/j.envpol.2016.03.012 McCormick A, Hoellein TJ, Mason SA et al (2014) Microplastic is an abundant and distinct microbial habitat in an urban river. Environ Sci Technol 48(20):11863–11871. https://doi.org/10.1021/es503610r Castañeda RA, Avlijas S, Simard MA et al (2014) Microplastic pollution in St. Lawrence River sediments. Can J Fish Aquat Sci 71(12):1767–1771. https://doi.org/10.1139/cjfas-2014-0281 Mani T, Hauk A, Walter U et al (2015) Microplastics profile along the Rhine River. Sci Rep 5:17988. https://doi.org/10.1038/srep17988 Lechner A, Keckeis H, Lumesberger-Loisl F et al (2014) The Danube so colourful: a potpourri of plastic litter outnumbers fish larvae in Europe’s second largest river. Environ Pollut 188:177–181. https://doi.org/10.1016/j.envpol.2014.02.006 Zbyszewski M, Corcoran PL (2011) Distribution and degradation of fresh water plastic particles along the beaches of Lake Huron, Canada. Water Air Soil Pollut 220(1–4):365–372. https://doi.org/10.1007/s11270-011-0760-6 Imhof HK, Ivleva NP, Schmid J et al (2013) Contamination of beach sediments of a subalpine lake with microplastic particles. Curr Biol 23(19):R867–R868. https://doi.org/10.1016/j.cub.2013.09.001 McGoran A, Clark P, Morritt D (2016) Presence of microplastic in the digestive tracts of European flounder, Platichthys flesus, and European smelt, Osmerus eperlanus, from the River Thames. Environ Pollut 220(Pt A):744–751. https://doi.org/10.1016/j.envpol.2016.09.078 Lusher AL, McHugh M, Thompson RC (2013) Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Mar Pollut Bull 67(1–2):94–99. https://doi.org/10.1016/j.marpolbul.2012.11.028 Napper IE, Bakir A, Rowland SJ et al (2015) Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics. Mar Pollut Bull 99(1–2):178–185. https://doi.org/10.1016/j.marpolbul.2015.07.029 Miklos D, Obermaier N, Jekel M (2016) Mikroplastik: Entwicklung eines Umweltbewertungskonzepts: Erste Überlegungen zur Relevanz von synthetischen Polymeren in der Umwelt. Umweltbundesamt, Dessau-Roßlau Sherrington C, Darrah C, Hann S et al (2016) Study to support the development of measures to combat a range of marine litter sources. Report for European Commission DG Environment Napper IE, Thompson RC (2016) Release of synthetic microplastic plastic fibres from domestic washing machines: effects of fabric type and washing conditions. Mar Pollut Bull. https://doi.org/10.1016/j.marpolbul.2016.09.025 Mintenig S, Int-Veen I, Löder M et al (2014) Mikroplastik in ausgewählten Kläranlagen des Oldenburgisch-Ostfriesischen Wasserverbandes (OOWV) in Niedersachsen. Alfred-Wegener-Institut, Probenanalyse mittels Mikro-FTIR Spektroskopie. Final report for the OOWV Helgoland. http://schlicktown.stadt-media.de/wp-content/uploads/Abschlussbericht_Mikroplastik_in_Klaeranlagen-3.pdf Gregory MR, Ryan PG (1997) Pelagic plastics and other seaborne persistent synthetic debris: a review of southern hemisphere perspectives. In: Alexander DE, Coe JM, Rogers DB (eds) Marine debris. Springer, New York, pp 49–66 Lechner A, Ramler D (2015) The discharge of certain amounts of industrial microplastic from a production plant into the River Danube is permitted by the Austrian legislation. Environ Pollut 200:159–160. https://doi.org/10.1016/j.envpol.2015.02.019 Herbort AF, Sturm MT, Hiller C et al (2017) Nano- und Mikroplastik – Braucht es eine komplizierte Einzelstoffdetektion bei der Gewässeranalytik? Umdenken mit dem Wasser 3.0 – PEI?! GIT Labor-Fachzeitschrift (03/2017): 32–35 Ternes T, Joss A (2006) Human pharmaceuticals, hormones and fragrances: the challenge of micropollutants in urban water management. IWA Publishing, London Schwarzenbach RP, Escher BI, Fenner K et al (2006) The challenge of micropollutants in aquatic systems. Science 313(5790):1072–1077. https://doi.org/10.1126/science.1127291 Nordic Water (2016) Microplastik—eine unsichtbare Gefahr. http://www.spurenstoffelimination.de/index.php/produkte/dynadisc-scheibenfilter/13-mikroplastik. Accessed 06 Dec 2016 Herbort AF, Schuhen K (2017) A concept for the removal of microplastics from the marine environment with innovative host-guest relationships. Environ Sci Pollut Res Int 24(12):11061–11065. https://doi.org/10.1007/s11356-016-7216-x Melnyk A, Namieśnik J, Wolska L (2015) Theory and recent applications of coacervate-based extraction techniques. TrAC Trends Anal Chem 71:282–292. https://doi.org/10.1016/j.trac.2015.03.013 Samaddar P, Sen K (2014) Cloud point extraction: A sustainable method of elemental preconcentration and speciation. J Ind Eng Chem 20(4):1209–1219. https://doi.org/10.1016/j.jiec.2013.10.033 Mukherjee P, Padhan SK, Dash S et al (2011) Clouding behaviour in surfactant systems. Adv Colloid Interface Sci 162(1–2):59–79. https://doi.org/10.1016/j.cis.2010.12.005 Ebelmen I (1846) Untersuchungen über die Verbindungen der Borsäure und Kieselsäure mit Aether. Ann Chem Pharm 57(3):319–355. https://doi.org/10.1002/jlac.18460570303 Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, Boston Lu Y (2006) Herstellung mesoporöser Materialien mithilfe von Tensid-Templaten: Von anorganischen über hybride zu organischen Strukturen. Angew Chem 118(46):7826–7829. https://doi.org/10.1002/ange.200602489 Moreau JJE, Pichon BP, Wong Chi M, Man et al (2004) A better understanding of the self-structuration of bridged silsesquioxanes. Angew Chem 116(2):205–208. https://doi.org/10.1002/ange.200352485 Uhlmann DR, Zelinski BJJ, Wnek GE (1984) Better ceramics through chemistry. Materials Research Society symposia proceedings, ISSN 0272–9172, vol 32. Materials Research Society, New York Zamboulis A, Moitra N, Moreau JJE et al (2010) Hybrid materials: versatile matrices for supporting homogeneous catalysts. J Mater Chem 20(42):9322. https://doi.org/10.1039/c000334d Vallet-Regi M, Colilla M, Gonzalez B (2011) Medical applications of organic-inorganic hybrid materials within the field of silica-based bioceramics. Chem Soc Rev 40(2):596–607. https://doi.org/10.1039/c0cs00025f Nicole L, Boissiere C, Grosso D et al (2004) Advanced selective optical sensors based on periodically organized mesoporous hybrid silica thin films. Chem Commun (Camb) 20:2312–2313. https://doi.org/10.1039/b408869g Burns A, Ow H, Wiesner U (2006) Fluorescent core-shell silica nanoparticles: towards “Lab on a Particle” architectures for nanobiotechnology. Chem Soc Rev 35(11):1028–1042. https://doi.org/10.1039/b600562b Corriu R, Leclercq D (1996) Neue Entwicklungen der Molekülchemie für Sol-Gel-Prozesse. Angew Chem 108(13–14):1524–1540. https://doi.org/10.1002/ange.19961081305 Moreau JJE, Vellutini L, Man WC, Michel et al (2003) Shape-controlled bridged silsesquioxanes: hollow tubes and spheres. Chemistry 9(7):1594–1599. https://doi.org/10.1002/chem.200390183 Köhn RD, Haufe M, Kociok-Köhn G et al (1997) The chemistry of 1,3,5-triazacyclohexane complexes synthesis and characterization of the cobalt(II) methoxide core {Co3(OMe)4}2+. Inorg Chem 36:6064–6069. https://doi.org/10.1021/ic9704593 Moreau JJE, Pichon BP, Man WC (2005) Lamellar phenylene-bridged hybrid silicones. Compos Interfaces 11(8–9):609–616. https://doi.org/10.1163/1568554053148726 Schuhen K (2016) Hybridkieselsäurematerial, insbesondere zur Fixierung anthropogener Verunreinigungen aus einem aquatischen Umfeld WO2016166219 (A1)(WO2016166219 (A1)) Izmaylov BA, Vasnev VA, Peregudov AS et al (2017) Synthesis of novel oligocarboranesiloxanes. J Organomet Chem 844:16–29. https://doi.org/10.1016/j.jorganchem.2017.05.038 Tu Y, Peng F, Adawy A et al (2015) Mimicking the cell: bio-inspired functions of supramolecular assemblies. Chem Rev. https://doi.org/10.1021/acs.chemrev.5b00344 Liu L, Guo Q-X (2002) The driving forces in the inclusion complexation of cyclodextrins. J Incl Phenom Macrocycl Chem 42(1/2):1–14. https://doi.org/10.1023/A:1014520830813 Abraham MH (1982) Free energies, enthalpies, and entropies of solution of gaseous nonpolar nonelectrolytes in water and nonaqueous solvents. The hydrophobic effect. J Am Chem Soc 104(8):2085–2094. https://doi.org/10.1021/ja00372a001 Buchwald P (2002) Complexation thermodynamics of cyclodextrins in the framework of a molecular size-based model for nonassociative organic liquids that includes a modified hydration-shell hydrogen-bond model for water. J Phys Chem B 106(27):6864–6870. https://doi.org/10.1021/jp025711t Moretto H-H, Schulze M, Wagner G (2000) Ullmann’s encyclopedia of industrial chemistry. Wiley, Weinheim Tahir H, Hindsgaul O (2000) Regio- and chemoselective alkylation of l-ascorbic acid under Mitsunobu conditions. J Org Chem 65:911–913. https://doi.org/10.1021/jo990606&%23x002B; Köhn RD, Haufe M, Mihan S et al (2000) Triazacyclohexane complexes of chromium as highly active homogeneous model systems for the Phillips catalyst. Chem Commun 19:1927–1928. https://doi.org/10.1039/B005842O Ticona Product Tool (2007) Material data sheet. http://www.hipolymers.com.ar/pdfs/gur/datos/gur%204150.pdf. Accessed 21 Apr 2017