Alkoxide-intercalated NiFe-layered double hydroxides magnetic nanosheets as efficient water oxidation electrocatalysts

Inorganic Chemistry Frontiers - Tập 3 Số 4 - Trang 478-487
Jose A. Carrasco1,2,3,4, Jorge Romero1,2,3,4, M. Varela5,6,3,7, Frank Hauke8,9,10,11, Gonzalo Abellán9,1,2,3,4, Andreas Hirsch8,9,10,11, Eugenio Coronado1,2,3,4
1Instituto de Ciencia Molecular (ICMol)
2Paterna
3Spain
4Universidad de Valencia
5Dpt. Fisica Aplicada III & Instituto Pluridisciplinar
6Madrid 28040
7Universidad Complutense de Madrid, Dpt. Fisica Aplicada III & Instituto Pluridisciplinar, Madrid 28040, Spain
890762 Fürth
9Department of Chemistry and Pharmacy and Institute of Advanced Materials and Processes (ZMP)
10Germany
11University Erlangen-Nürnberg

Tóm tắt

Alkoxide-intercalated NiFe-layered double hydroxides were synthesizedviathe nonaqueous methanolic route. These magnetic nanosheets can be exfoliated in water and exhibit an outstanding behaviour as OER electrocatalysts.

Từ khóa


Tài liệu tham khảo

Geim, 2007, Nat. Mater., 6, 183, 10.1038/nmat1849

Geim, 2013, Nature, 499, 419, 10.1038/nature12385

Wang, 2012, Nat. Nanotechnol., 7, 699, 10.1038/nnano.2012.193

Nicolosi, 2013, Science, 340, 1226419, 10.1126/science.1226419

Hanlon, 2015, Nat. Commun., 6, 8563, 10.1038/ncomms9563

S. M. Auerbach , K. A.Carrado and P. K.Dutta, Handbook of Layered Materials, CRC Press, 2004

Layered double hydroxides: present and future, ed. V. Rives, Nova Science Publishers, Huntington, N.Y, 2001

F. Li and X.Duan, in Layered Double Hydroxides, ed. X. Duan and D. G. Evans, Springer, Berlin, Heidelberg, 2006, pp. 193–223

Rives, 2014, Appl. Clay Sci., 88–89, 239, 10.1016/j.clay.2013.12.002

Abellán, 2015, Acc. Chem. Res., 48, 1601, 10.1021/acs.accounts.5b00033

Wang, 2012, Chem. Rev., 112, 4124, 10.1021/cr200434v

Chen, 2014, Science, 344, 495, 10.1126/science.1252553

Luo, 2014, Science, 345, 1593, 10.1126/science.1258307

Gong, 2013, J. Am. Chem. Soc., 135, 8452, 10.1021/ja4027715

Song, 2014, Nat. Commun., 5, 4477, 10.1038/ncomms5477

Wang, 2012, Nat. Commun., 3, 917, 10.1038/ncomms1921

Li, 2013, Nat. Commun., 4, 1805, 10.1038/ncomms2812

Abellán, 2012, Chem. Sci., 3, 1481, 10.1039/c2sc01064j

Abellán, 2013, Part. Part. Syst. Charact., 30, 853, 10.1002/ppsc.201300186

Abellán, 2014, Adv. Mater. Interfaces, 1, 1400184, 10.1002/admi.201400184

Carrasco, 2016, J. Mater. Chem. C, 4, 440, 10.1039/C5TC02861B

Han, 2008, Chem. Mater., 20, 360, 10.1021/cm7023789

Abellán, 2010, J. Mater. Chem., 20, 7451, 10.1039/c0jm01447h

Abellán, 2013, Inorg. Chem., 52, 10147, 10.1021/ic401576q

Lee, 2012, Bull. Korean Chem. Soc., 33, 725, 10.5012/bkcs.2012.33.2.725

Ma, 2015, ACS Nano, 9, 1977, 10.1021/nn5069836

Abellán, 2013, Inorg. Chem., 52, 7828, 10.1021/ic400883k

Gardner, 2001, Adv. Mater., 13, 1263, 10.1002/1521-4095(200108)13:16<1263::AID-ADMA1263>3.0.CO;2-R

Gursky, 2006, J. Am. Chem. Soc., 128, 8376, 10.1021/ja0612100

Abellán, 2014, J. Mater. Chem. C, 2, 3723, 10.1039/C3TC32578D

Lee, 2004, Chem. Mater., 16, 3774, 10.1021/cm049357i

Horcas, 2007, Rev. Sci. Instrum., 78, 013705, 10.1063/1.2432410

Lu, 2014, Chem. Commun., 50, 6479, 10.1039/C4CC01625D

Boehm, 1981, J. Chem. Educ., 58, 809, 10.1021/ed058p809

Abellán, 2016, Polymers, 8, 5, 10.3390/polym8010005

Conterosito, 2015, Chem. – Eur. J., 21, 14975, 10.1002/chem.201500450

Guo, 2010, Chem. Commun., 46, 5197, 10.1039/c0cc00313a

Bhattacharya, 2005, J. Microelectromech. Syst., 14, 590, 10.1109/JMEMS.2005.844746

Kim, 2002, J. Membr. Sci., 199, 135, 10.1016/S0376-7388(01)00686-X

Nesbitt, 2000, Phys. Chem. Miner., 27, 357, 10.1007/s002690050265

Rabu, 2015, Nanotechnol. Rev., 4, 557, 10.1515/ntrev-2015-0017

Almansa, 2008, Eur. J. Inorg. Chem., 2008, 5642, 10.1002/ejic.200800658

J. A. Mydosh , Spin glasses: an experimental introduction, Taylor & Francis, London, Washington, DC, 1993

Wang, 2011, Chem. Mater., 23, 171, 10.1021/cm1024603

Pérez-Ramírez, 2002, J. Mater. Chem., 12, 2370, 10.1039/B110314H

Abellán, 2013, Polyhedron, 52, 216, 10.1016/j.poly.2012.09.045

Layrac, 2011, J. Phys. Chem. C, 115, 3263, 10.1021/jp1100335

Liang, 2013, J. Am. Chem. Soc., 135, 2013, 10.1021/ja3089923

Xie, 2014, Inorg. Chem. Front., 1, 751, 10.1039/C4QI00127C

Chen, 2016, Inorg. Chem. Front., 3, 236, 10.1039/C5QI00197H

Gong, 2014, Nano Res., 1

Galán-Mascarós, 2015, ChemElectroChem, 2, 37, 10.1002/celc.201402268

Long, 2014, Angew. Chem., Int. Ed., 126, 7714, 10.1002/ange.201402822

Chen, 2016, Nanoscale Horiz., 10.1039/C5NH00082C

Tang, 2015, Adv. Mater., 27, 4516, 10.1002/adma.201501901

Li, 2016, Chem. Commun., 52, 1439, 10.1039/C5CC08150E

Trotochaud, 2014, J. Am. Chem. Soc., 136, 6744, 10.1021/ja502379c

Chen, 2015, J. Am. Chem. Soc., 137, 15090, 10.1021/jacs.5b10699

Oliver-Tolentino, 2014, J. Phys. Chem. C, 118, 22432, 10.1021/jp506946b