Alkaline decomposition of synthetic jarosite with arsenic
Tóm tắt
The widespread use of jarosite-type compounds to eliminate impurities in the hydrometallurgical industry is due to their capability to incorporate several elements into their structures. Some of these elements are of environmental importance (Pb2+, Cr6+, As5+, Cd2+, Hg2+). For the present paper, AsO43- was incorporated into the lattice of synthetic jarosite in order to carry out a reactivity study. Alkaline decomposition is characterized by removal of sulfate and potassium ions from the lattice and formation of a gel consisting of iron hydroxides with absorbed arsenate. Decomposition curves show an induction period followed by a conversion period. The induction period is independent of particle size and exponentially decreases with temperature. The conversion period is characterized by formation of a hydroxide halo that surrounds an unreacted jarosite core. During the conversion period in NaOH media for [OH-] > 8 × 10-3 mol L-1, the process showed a reaction order of 1.86, and an apparent activation energy of 60.3 kJ mol-1 was obtained. On the other hand, during the conversion period in Ca(OH)2 media for [OH-] > 1.90 × 10-2 mol L-1, the reaction order was 1.15, and an apparent activation energy of 74.4 kJ mol-1 was obtained. The results are consistent with the spherical particle model with decreasing core and chemical control.
Tài liệu tham khảo
Bhattacharya P, Welch AH, Stollenwerk KG, McLaughlin MJ, Bundschuh J, Panaullah G: Arsenic in the environment: Biology and Chemistry. Sci Total Environ. 2007, 379: 109-120. 10.1016/j.scitotenv.2007.02.037.
Brammer H: Mitigation of arsenic contamination in irrigated paddy soils in South and South-east Asia. Environt Int. 2009, 35: 856-863. 10.1016/j.envint.2009.02.008.
Mandal BK, Suzuki KT: Arsenic round the world. Talanta. 2002, 58: 201-235. 10.1016/S0039-9140(02)00268-0.
Ning RY: Arsenic removal by reverse osmosis. Desalination. 2002, 143: 237-241. 10.1016/S0011-9164(02)00262-X.
Choong TSY, Chuah TG, Robiah Y, Koay FLG, Azni I: Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination. 2007, 217: 139-166. 10.1016/j.desal.2007.01.015.
Gupta K, Ghosh UC: Arsenic removal using hydrous nanostructure iron (III)–titanium (IV) binary mixed oxide from aqueous solution. J Hazard Mater. 2009, 161: 884-892. 10.1016/j.jhazmat.2008.04.034.
Dutrizac JE, Jambor JL: The behaviour of arsenic during jarosite precipitation: Arsenic precipitation at 97°C from sulfate or chloride media. Can Metall Quart. 1987, 26: 91-101. 10.1179/000844387795429983.
Dutrizac JE, Jambor JL, Chen TT: The behaviour of arsenic during jarosite precipitation: reactions at 150°C and the mechanism of arsenic precipitation. Can Metall Quart. 1987, 26: 103-115. 10.1179/000844387795429992.
Asta MP, Cama J, Martínez M, Giménez J: Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications. J Hazard Mater. 2009, 171: 965-972. 10.1016/j.jhazmat.2009.06.097.
Welch SA, Kirste D, Christy AG, Beavis FR, Beavis SG: Jarosite dissolution II - reaction kinetics, stoichiometry and acid flux. Chem Geol. 2008, 254: 73-86. 10.1016/j.chemgeo.2008.06.010.
Smith AML, Hudson-Edwards KA, Dubbin WE, Wright K: Dissolution of jarosite [KFe3(SO4)2(OH)6] at pH2 and 8: Insights from batch experiments and computational modeling. Geochim Cosmociem Acta. 2006, 70: 608-621. 10.1016/j.gca.2005.09.024.
Smith AML, Dubbin WE, Wright K, Hudson-Edwards KA: Dissolution of lead- and lead–arsenic-jarosites at pH 2 and 8 and 20°C: Insights from batch experiments. Chem Geol. 2006, 229: 344-361. 10.1016/j.chemgeo.2005.11.006.
Savage KS, Bird DK, O’Day PA: Arsenic speciation in synthetic jarosite. Chem Geol. 2005, 215: 473-498. 10.1016/j.chemgeo.2004.06.046.
Patiño F, Reyes IA, Rivera I, Reyes M, Hernández J, Pérez M: Decomposition kinetics of argentian lead jarosite in NaOH media. J Mex Chem Soc. 2011, 55: 208-213.
Patiño F, Viñals J, Roca A, Núñez C: Alkaline decomposition-cyanidation kinetics of argentian plumbojarosite. Hydrometallurgy. 1994, 34: 279-291. 10.1016/0304-386X(94)90066-3.
Patiño F, Salinas E, Cruells M, Roca A: Alkaline decomposition-cyanidation kinetics of argentian natrojarosite. Hydrometallurgy. 1998, 49: 323-336. 10.1016/S0304-386X(98)00041-3.
Patiño F, Cruells M, Roca A, Salinas E, Pérez M: Kinetics of alkaline decomposition and cyanidation of argentian ammonium jarosite in lime medium. Hydrometallurgy. 2003, 70: 153-161. 10.1016/S0304-386X(03)00074-4.
Cruells M, Roca A, Patiño F, Salinas E, Rivera I: Cyanidation kinetics of argentian jarosite in alkaline media. Hydrometallurgy. 2000, 55: 153-163. 10.1016/S0304-386X(99)00072-9.
Reyes IA, Patiño F, Rivera I, Flores MU, Reyes M, Hernández J: Alkaline reactivity of arsenical natrojarosite. J Braz Chem Soc. 2011, 22: 2260-2267.
Lide DR: Handbook of Chemistry and Physics. CRC Press. 2009, 8: 8-79.
Levenspiel O: Ingeniería de las Reacciones Químicas. 2010, Barcelona: Reverte press
Harriot P: Mass transfer to particles: Part I. Suspended in agitated tanks. Amer Chem Eng. 1962, 8: 93-102. 10.1002/aic.690080122.
Lewis DM, Glastonbury JR: Particle-liquid hydrodynamics and mass transfer in a stirred vessel. Part II - mass transfer. Trans Inst Chem Eng. 1972, 50: 42-136.
Sohn HY, Wadsworth ME: Rate Processes of Extractive Metallurgy. 1979, New York: Plenum press
Roca A, Patiño F, Viñals J, Nuñez C: Alkaline decomposition-cyanidation kinetics of argentojarosite. Hydrometallurgy. 1993, 33: 341-358. 10.1016/0304-386X(93)90071-K.