Alkalihalophilic alga Picocystis salinarum SLJS6 from Sambhar Salt Lake: Potential for bicarbonate-based biomass production and carbon capture
Tài liệu tham khảo
2005
Bartley, 2013, Effects of salinity on growth and lipid accumulation of biofuel microalga Nannochloropsis Salina and invading organisms, Biomass Bioenerg., 54, 83, 10.1016/j.biombioe.2013.03.026
Ben-Amotz, 2009
Byreddy, 2016, A quick colorimetric method for total lipid quantification in microalgae, J. Microbiol. Methods, 125, 28, 10.1016/j.mimet.2016.04.002
Chhandama, 2021, Microalgae as a feedstock for the production of biodiesel: a review, Bioresour. Technol. Rep., 15
Chi, 2011, Bicarbonate produced from carbon capture for algae culture, Trends Biotechnol., 29, 537, 10.1016/j.tibtech.2011.06.006
Chi, 2013, Bicarbonate-based integrated carbon capture and algae production system with alkalihalophilic cyanobacterium, Bioresour. Technol., 133, 513, 10.1016/j.biortech.2013.01.150
Chi, 2014, Selection of microalgae and cyanobacteria strains for bicarbonate-based integrated carbon capture and algae production system, Appl. Biochem. Biotechnol., 172, 447, 10.1007/s12010-013-0515-5
Chisti, 2007, Biodiesel from microalgae, Biotechnol. Adv., 25, 294, 10.1016/j.biotechadv.2007.02.001
Fanjing, 2009, Characterization of a eukaryotic picoplankton alga, strain DGN-Z1, isolated from a soda lake in Inner Mongolia, China, Nat. Resour. Environ. Issues, 15, 38
Gerasimenko, 2009, Halophilic algal-bacterial and cyanobacterial communities and their role in carbonate precipitation, Paleontol. J., 43, 940, 10.1134/S0031030109080127
Gonzalez Bautista, 2021, Arthrospira platensis as a feasible feedstock for bioethanol production, Appl. Sci., 11, 6756, 10.3390/app11156756
Grant, 2011, Distribution and diversity of soda lake alkaliphiles, vol. 1, 27
Gunde-Cimerman, 2018, Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations, FEMS Microbiol. Rev., 42, 353, 10.1093/femsre/fuy009
Hou, 2016, CAH1 and CAH2 as key enzymes required for high bicarbonate tolerance of a novel microalga Dunaliella Salina HTBS, Enzym. Microb. Technol., 87, 17, 10.1016/j.enzmictec.2016.02.010
Katz, 2007, Salt-induced changes in the plasma membrane proteome of the halotolerant alga Dunaliella Salina as revealed by blue native gel electrophoresis and nano-LC-MS/MS analysis, Mol. Cell. Proteom., 6, 1459, 10.1074/mcp.M700002-MCP200
Kaushik, 2019, Potential of novel Dunaliella Salina from Sambhar salt lake, India, for bioremediation of hexavalent chromium from aqueous effluents: an optimized green approach, Ecotoxicol. Environ. Saf., 180, 430, 10.1016/j.ecoenv.2019.05.039
Kim, 2017, Bicarbonate-based cultivation of Dunaliella Salina for enhancing carbon utilization efficiency, Bioresour. Technol., 237, 72, 10.1016/j.biortech.2017.04.009
Kirst, 1989, Salinity tolerance of eukaryotic marine algae, Annu. Rev. Plant Physiol. Plant Mol. Biol., 41, 21, 10.1146/annurev.pp.41.060190.000321
Kishi, 2018, Carbon fixation properties of three alkalihalophilic microalgal strains under high alkalinity, J. Appl. Phycol., 30, 401, 10.1007/s10811-017-1226-z
Krienitz, 2018
Krienitz, 2010, Fluctuating algal food populations and the occurrence of Lesser Flamingos (Phoeniconaias minor) in three Kenyan Rift Valley lakes, J. Phycol., 46, 1088, 10.1111/j.1529-8817.2010.00915.x
Krienitz, 2012, Picocystis salinarum (Chlorophyta) in saline lakes and hot springs of East Africa, Phycologia, 51, 22, 10.2216/11-28.1
Krienitz, 2016, An underexplored resource for biotechnology: selected microphytes of East African soda lakes and adjacent waters, 323
Kulshreshtha, 2013, Evaluation of various inorganic media for growth and biopigments of Dunaliella Salina, Int J Pharm. Bio. Sci, 4, 1083
Lam, 2012, Current status and challenges on microalgae-based carbon capture, Int. J. Greenhouse Gas Control, 10, 456, 10.1016/j.ijggc.2012.07.010
Lee, 2020, Overexpression of fructose-1, 6-bisphosphate aldolase 1 enhances accumulation of fatty acids in Chlamydomonas reinhardtii, Algal Res., 47, 10.1016/j.algal.2020.101825
Lewin, 2000, Picocystis salinarum gen. et sp. nov. (Chlorophyta) – a new picoplanktonic green alga, Phycologia, 39, 560, 10.2216/i0031-8884-39-6-560.1
Liska, 2004, Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homology-based proteomics, Plant Physiol., 136, 2806, 10.1104/pp.104.039438
Lopes dos Santos, 2016, Photosynthetic pigments of oceanic Chlorophyta belonging to prasinophytes clade VII, J. Phycol., 52, 148, 10.1111/jpy.12376
Ma, 2019, Fresh living Arthrospira as dietary supplements: current status and challenges, Trends Food Sci. Technol., 88, 439, 10.1016/j.tifs.2019.04.010
Mehta, 2021, Culture independent exploration of the hypersaline ecosystem indicates the environment specific microbiome evolution, Front. Microbiol., 3194
Mikhodyuk, 2008, Ecophysiology and polymorphism of the unicellular extremely natronophilic cyanobacterium Euhalothece sp. Z-M001 from Lake Magadi, Microbiology, 77, 717, 10.1134/S0026261708060106
Mishra, 2014, Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method, Bioresour. Technol., 155, 330, 10.1016/j.biortech.2013.12.077
Morales, 2021, Microalgal lipids: a review of lipids potential and quantification for 95 phytoplankton species, Biomass Bioenergy, 150, 106, 10.1016/j.biombioe.2021.106108
Najafi, 2011, Algae as a sustainable energy source for biofuel production in Iran: a case study, Renew. Sust. Energ. Rev., 15, 3870, 10.1016/j.rser.2011.07.010
Oren, 2008, Microbial life at high salt concentrations: phylogenetic and metabolic diversity, Saline Syst., 4, 1, 10.1186/1746-1448-4-2
Ouada, 2018, Effect of Bisphenol a on the extremophilic microalgal strain Picocystis sp. (Chlorophyta) and its high BPA removal ability, Ecotoxicol. Environ. Saf., 158, 1, 10.1016/j.ecoenv.2018.04.008
Pálmai, 2020, Ecophysiology of a successful phytoplankton competitor in the African flamingo lakes: the green alga Picocystis salinarum (Picocystophyceae), J. Appl. Phycol., 1
Pathak, 2015, Hydrobiology of hypersaline Sambhar salt lake a Ramsar site, Rajasthan, India, Indian J. Mar. Sci., 44, 1640
Peng, 2020, Biofuel production from microalgae: a review, Environ. Chem. Lett., 18, 285, 10.1007/s10311-019-00939-0
Phadwal, 2003, Isolation and characterization of an indigenous isolate of Dunaliella sp. for β-carotene and glycerol production from a hypersaline lake in India, J. Basic Microbiol.: Int. J. Biochem. Physiol. Genetics Morphol. Ecol. Microorganisms, 43, 423, 10.1002/jobm.200310271
Pulz, 2004, Valuable products from biotechnology of microalgae, Appl. Microbiol. Biotechnol., 65, 635, 10.1007/s00253-004-1647-x
Ramos, 2011, The unicellular green alga Dunaliella Salina Teod. as a model for abiotic stress tolerance: genetic advances and future perspectives, Algae, 26, 3, 10.4490/algae.2011.26.1.003
Rihab, 2017, Cadmium effect on physiological responses of the tolerant Chlorophyta specie Picocystis sp. isolated from Tunisian wastewaters, Environ. Sci. Pollut. Res. Int., 24, 1803, 10.1007/s11356-016-7950-0
Rippka, 1998, Isolation and purification of cyanobacteria, Methods Enzymol., 167, 3, 10.1016/0076-6879(88)67004-2
Roesler, 2002, Distribution, production, and ecophysiology of Picocystis strain ML in Mono Lake, California, Limnol. Oceanogr., 47, 440, 10.4319/lo.2002.47.2.0440
Saccò, 2021, Salt to conserve: a review on the ecology and preservation of hypersaline ecosystems, Biol. Rev., 96, 2828, 10.1111/brv.12780
Schagerl, 2016, Dipping into the soda lakes of East Africa, 3
da Silva, 2021, Assessment of the potential of Dunaliella microalgae for different biotechnological applications: a systematic review, Algal Res., 58, 10.1016/j.algal.2021.102396
Srinivasan, 2018, Bicarbonate supplementation enhances growth and biochemical composition of Dunaliella Salina V-101 by reducing oxidative stress induced during macronutrient deficit conditions, Sci. Rep., 8, 6972, 10.1038/s41598-018-25417-5
Wang, 2014, Microalgal assemblages in a poikilohaline pond, J. Phycol., 50, 303, 10.1111/jpy.12158
Wang, 2008, CO2 bio-mitigation using microalgae, Appl. Microbiol. Biotechnol., 79, 707, 10.1007/s00253-008-1518-y
Ventosa, 2009, Physico-chemical characteristics of hypersaline environments and their biodiversity, 2, 247
Wang, 2019, Identification of early salinity stress-responsive proteins in Dunaliella Salina by isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomic analysis, Int. J. Mol. Sci., 20, 599, 10.3390/ijms20030599
Yadav, 2007, Hydrogeochemistry of Sambhar Salt Lake, Rajasthan: implication to recycling of salt and annual salt budget, J. Geol. Soc. India, 69, 139
Ye, 2020, Sustainable carbon capture via halophilic and alkaliphilic cyanobacteria: the role of light and bicarbonate, Biofuel Res. J., 7, 1195, 10.18331/BRJ2020.7.3.3
Zhu, 2018, Bicarbonate-based carbon capture and algal production system on ocean with floating inflatable-membrane photobioreactor, J. Appl. Phycol., 30, 875, 10.1007/s10811-017-1285-1