Alkalihalobacillus deserti sp. nov., Isolated from the Saline–Alkaline Soil

Current Microbiology - Tập 80 - Trang 1-10 - 2023
Zulihumaer Rouzi1, Yu-Qian Li2, Muyesaier Aosiman1, Dilireba Abudourousuli1, Lan Liu3, Dalal Hussien M. Alkhalifah4, Wael N. Hozzein5,6, Deng-Di An1, Wen-Jun Li3,7
1Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, People’s Republic of China
2CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
3State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
4Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
5Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
6Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
7State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, People’s Republic of China

Tóm tắt

A bacterial strain, designated TRPH29T, was isolated from saline-alkaline soil, collected from the southern edge of the Gurbantunggut desert, Xinjiang, People’s Republic of China. The isolate was Gram-staining positive, facultatively anaerobic, straight rods. Growth occurred at 15–40 °C (optimum, 28 °C), pH 8.0–13.0 (optimum, 10.0), and in the presence of 0–15% (w/v) NaCl (optimum, 2%). Phylogenetic analysis using 16S rRNA gene sequence indicated that strain TRPH29T showed the highest sequence similarities to Alkalihalobacillus krulwichiae (98.31%), Alkalihalobacillus wakoensis (98.04%), and Alkalihalobacillus akibai (97.69%). Average nucleotide identity (ANI) and digital DNA-DNA hybridization values between strain TRPH29T and Alkalihalobacillus krulwichiae, Alkalihalobacillus wakoensis, Alkalihalobacillus akibai were in the range of 73.62–75.52% and 15.0–21.20%, respectively. Results of genome analyses indicated that the genome size of strain TRPH29T was 5.05 Mb, with a genomic DNA G + C content of 37.30%. Analysis of the cellular component of strain TRPH29T revealed that the primary fatty acids were anteiso-C15:0 and iso-C15:0, and the polar lipids included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified glycolipid, and an unidentified phospholipid. The predominant respiratory quinone was MK-7. Based on the genomic, phylogenetic, phenotypic and chemotaxonomic analyses, strain TRPH29T represents a novel species of the genus Alkalihalobacillus, for which the name Alkalihalobacillus deserti sp. nov. is proposed. The type strain is TRPH29T (= CGMCC 1.19067T = NBRC 115475T).

Tài liệu tham khảo

Cohn F (1872) Untersuchungen über Bakterien. Beitr Biol Pflanz 1:127–224 Joshi A, Thite S, Karodi P, Joseph N, Lodha T (2021) Alkalihalobacterium elongatum gen. nov. sp. nov.: an antibiotic-producing bacterium isolated from Lonar Lake and reclassification of the genus Alkalihalobacillus into seven novel genera. Front Microbiol 12:722369. https://doi.org/10.3389/fmicb.2021.722369 Patel S, Gupta RS (2020) A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. Int J Syst Evol Microbiol 70:406–438. https://doi.org/10.1099/ijsem.0.003775 Priest FG, Goodfellow MO, Todd C (1988) A numerical classification of the genus Bacillus. Microbiology 134(7):1847–1882. https://doi.org/10.1099/00221287-134-7-1847 Kämpfer P (1994) Limits and possibilities of total fatty acid analysis for classification and identification of Bacillus species. Syst Appl Microbiol 17(1):86–98. https://doi.org/10.1016/S0723-2020(11)80035-4 Shin B, Park C, Lee BH, Lee KE, Park W (2020) Bacillus miscanthi sp. nov., a alkaliphilic bacterium from the rhizosphere of Miscanthus sacchariflorus. Int J Syst Evol Microbiol 70:1843–1849. https://doi.org/10.1099/ijsem.0.003982 Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol R 63(4):735. https://doi.org/10.1128/MMBR.63.4.735-750.1999 Sarethy IP et al (2011) Alkaliphilic bacteria: applications in industrial biotechnology. J Ind Microbiol Biotechnol 38(7):769–790. https://doi.org/10.1007/s10295-011-0968-x Lee GH, Rhee MS, Chang DH, Kwon KK, Bae KS (2014) Bacillus solimangrovi sp. nov., isolated from mangrove soil. Int J Syst Evol Microbiol 64(Pt 5):1622–1628. https://doi.org/10.1099/ijs.0.058230-0 Li X et al (2018) Actinocorallia populi sp. nov., an endophytic actinomycete isolated from a root of Populus adenopoda (Maxim.). Int J Syst Evol Microbiol 68:2325–2330. https://doi.org/10.1099/ijsem.0.002840 Yoon SH et al (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67(5):1613–1617. https://doi.org/10.1099/ijsem.0.001755 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 Larkin MA et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948 Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.0000/PMID3447015 Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376. https://doi.org/10.1007/BF01734359 Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416. https://doi.org/10.1093/sysbio/20.4.406 Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054 Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x Ewels P, Magnusson M, Lundin S, Käller M (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32:3047–3048. https://doi.org/10.1093/bioinformatics/btw354 Bankevich A et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021 Lagesen K et al (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108. https://doi.org/10.1093/nar/gkm160 Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25(5):955–964. https://doi.org/10.1093/nar/25.5.955 Aziz RK et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75 Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J (2015) JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32(6):929–931. https://doi.org/10.1093/bioinformatics/btv681 Rodriguez-R LM, Konstantinidis KT (2014) Bypassing cultivation to identify bacterial species. Microbe 9(3):111–118. https://doi.org/10.1128/microbe.9.111.1 Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinfo 14:60. https://doi.org/10.1186/1471-2105-14-60 Jiao JY et al (2022) Comparative genomic analysis of Thermus provides insights into the evolutionary history of an incomplete denitrification pathway. mLife 1(2):12. https://doi.org/10.1002/mlf2.12009 Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P (ed) Methods for general and molecular bacteriology. American Society for Microbiology, pp 607–654 Kämpfer P et al (2017) Psychromonas aquatilis sp. nov. isolated from seawater samples obtained in the Chilean Antarctica. Int J Syst Evol Microbiol 67:1306–1311. https://doi.org/10.1099/ijsem.0.001801 Gonzalez C, Gutierrez C, Ramirez C (1978) Halobacterium vallismortis sp. nov., An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24(6):710–715. https://doi.org/10.1139/m78-119 Yumoto I et al (2003) Bacillus krulwichiae sp. nov., a halotolerant obligate alkaliphile that utilizes benzoate and m-hydroxybenzoate. Int J Syst Evol Microbiol 53:1531–1536. https://doi.org/10.1099/ijs.0.02596-0 Kovacs N (1956) Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178:703–704. https://doi.org/10.1038/178703a0 Kroppenstedt RM (1982) Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 5(12):2359–2367. https://doi.org/10.1080/01483918208067640 Hasegawa T, Takizawa M, Tanida S (1983) A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29(4):319–322. https://doi.org/10.2323/jgam.29.319 Lechevalier MP, Lechevalier H (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443. https://doi.org/10.1099/00207713-20-4-435 Minnikin DE et al (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2(5):233–241. https://doi.org/10.1016/0167-7012(84)90018-6 Collins MD, Jones D (1980) Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 48:459–470. https://doi.org/10.1111/j.1365-2672.1980.tb01036.x Mason JR, Cammack R (1992) The electron-transport proteins of hydroxylating bacterial dioxygenases. Annu Rev Microbiol 46:277–305. https://doi.org/10.1146/annurev.mi.46.100192.001425 Borsodi AK et al (2011) Bacillus alkalisediminis sp. nov., an alkaliphilic and moderately halophilic bacterium isolated from sediment of extremely shallow soda ponds. IJSEM 61(8):1880–1886. https://doi.org/10.1099/ijs.0.019489-0 Nogi Y, Takami H, Horikoshi K (2005) Characterization of alkaliphilic bacillus strains used in industry: proposal of five novel species. Int J Syst Evol Microbiol 55(Pt 6):2309–2315. https://doi.org/10.1099/ijs.0.63649-0 Rundlöf AK, Arnér ESJ (2004) Regulation of the mammalian selenoprotein thioredoxin reductase 1 in relation to cellular phenotype, growth, and signaling events. Antioxid Redox Sign 6(1):41–52. https://doi.org/10.1089/152308604771978336 Gibson DT, Yeh WK (1984) Microbial degradation of aromatic hydrocarbons. Microb Degrad Org Compd. https://doi.org/10.1002/jobm.19650050409 Manivasagan P, Venkatesan J, Sivakumar K, Kim SK (2013) Marine actinobacterial metabolites: current status and future perspectives. Microbiol Res. https://doi.org/10.1016/j.micres.2013.02.002 Horikoshi K (1971) Production of alkaline enzymes by alkalophilic microorganisms. Part I. Alkaline protease produced by Bacillus no. 221. Agric Biol Chem 35(9):1407–1414. https://doi.org/10.1080/00021369.1971.10860094 Ito S et al (1989) Alkaline cellulase for laundry detergents-production by Bacillus sp. KSM-635 and enzymatic-properties. Agric Biol Chem 53(5):1275–1281. https://doi.org/10.1080/00021369.1989.10869489 Loiseau C et al (2015) Surfactin from Bacillus subtilis displays an unexpected anti-legionella activity. Appl Microbiol Biotechnol 99(12):5083–5093. https://doi.org/10.1007/s00253-014-6317-z Qi G et al (2010) Lipopeptide induces apoptosis in fungal cells by a mitochondria-dependent pathway. Peptides 31(11):1978–1986. https://doi.org/10.1016/j.peptides.2010.08.003 Furuya S, Mochizuki M, Aoki Y, Kobayashi H, Takayanagi T, Shimizu M, Suzuki S (2011) Isolation and characterization of Bacillus subtilis KS1 for the biocontrol of grapevine fungal diseases. Biocontrol Sci Technol 21(6):705–720. https://doi.org/10.1080/09583157.2011.574208 Cheng W, Feng YQ, Ren J, Jing D, Wang C (2016) Anti-tumor role of Bacillus subtilis fmbJ-derived fengycin on human colon cancer HT29 cell line. Neoplasma 63(2):215–222. https://doi.org/10.4149/206_150518N270 Tran PN et al (2015) Whole-Genome sequence and classification of 11 endophytic bacteria from poison ivy (Toxicodendron radicans). Genome Announc. https://doi.org/10.1128/genomeA.01319-15 Komagata K, Suzuki K (1987) Lipid and cell-wall analysis in bacterial systematics. Method Microbiol 19:161–207. https://doi.org/10.1016/S0580-9517(08)70410-0 Liu B et al (2019) Bacillus urbisdiaboli sp. nov., isolated from soil sampled in Xinjiang. Int J Syst Evol Microbiol 69(6):1591–1596. https://doi.org/10.1099/ijsem.0.003363