Alkali-induced 3D crinkled porous Ti3C2 MXene architectures coupled with NiCoP bimetallic phosphide nanoparticles as anodes for high-performance sodium-ion batteries

Energy and Environmental Science - Tập 12 Số 8 - Trang 2422-2432
Danyang Zhao1,2,3,4,5, Ruizheng Zhao1,2,3,4,5, Shihua Dong1,2,3,4,5, Xianguang Miao1,2,3,4,5, Zhiwei Zhang1,2,3,4,5, Chengxiang Wang1,2,3,4,5, Longwei Yin1,2,3,4,5
1Jinan 250061
2Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials
3Ministry of Education
4School of Materials Science and Engineering
5Shandong University

Tóm tắt

Coupling NiCoP bimetallic phosphide nanoparticles with alkali-induced 3D crinkled Ti3C2 effectively enhances the structural stability and improved reaction kinetics of anodes for SIBs.

Từ khóa


Tài liệu tham khảo

Yin, 2018, Energy Environ. Sci., 11, 3201, 10.1039/C8EE01046C

Larcher, 2015, Nat. Chem., 7, 19, 10.1038/nchem.2085

Roberts, 2014, Chem. Soc. Rev., 43, 4341, 10.1039/C4CS00071D

Li, 2017, Nano Energy, 32, 494, 10.1016/j.nanoen.2017.01.009

Lotfabad, 2014, ACS Nano, 8, 7115, 10.1021/nn502045y

Cheng, 2012, Nanoscale, 4, 779, 10.1039/C1NR11365H

Yan, 2014, Adv. Energy Mater., 4, 1301584, 10.1002/aenm.201301584

Peng, 2016, Small, 12, 1359, 10.1002/smll.201502788

Anasori, 2017, Nat. Rev. Mater., 2, 16098, 10.1038/natrevmats.2016.98

Boota, 2016, Adv. Mater., 28, 1517, 10.1002/adma.201504705

Zhao, 2017, ACS Energy Lett., 3, 132, 10.1021/acsenergylett.7b01063

Wang, 2015, Nat. Commun., 6, 6544, 10.1038/ncomms7544

Ling, 2014, Proc. Natl. Acad. Sci. U. S. A., 111, 16676, 10.1073/pnas.1414215111

Ghidiu, 2014, Nature, 516, 78, 10.1038/nature13970

Li, 2017, Adv. Energy Mater., 7, 1602725, 10.1002/aenm.201602725

Anasori, 2015, ACS Nano, 9, 9507, 10.1021/acsnano.5b03591

Wang, 2015, J. Am. Chem. Soc., 137, 2715, 10.1021/ja512820k

Niu, 2018, ACS Nano, 12, 3928, 10.1021/acsnano.8b01459

Zhao, 2018, Chem. Commun., 54, 4533, 10.1039/C8CC00649K

Bao, 2018, Adv. Energy Mater., 8, 1702485, 10.1002/aenm.201702485

Sun, 2018, Adv. Energy Mater., 8, 1801197, 10.1002/aenm.201801197

Shao, 2016, ACS Appl. Mater. Interfaces, 8, 35368, 10.1021/acsami.6b12881

Chen, 2015, Nat. Commun., 6, 6929, 10.1038/ncomms7929

Miao, 2017, Small, 13, 1702138, 10.1002/smll.201702138

Li, 2015, Chem. Commun., 51, 3682, 10.1039/C4CC09604E

Zhao, 2015, J. Mater. Chem. A, 3, 21754, 10.1039/C5TA05781G

Ge, 2017, Nano Energy, 32, 117, 10.1016/j.nanoen.2016.11.055

Wang, 2018, Adv. Funct. Mater., 1801016, 10.1002/adfm.201801016

Li, 2018, Adv. Funct. Mater., 28, 1800036, 10.1002/adfm.201800036

Zhang, 2017, Adv. Mater., 29, 1605502, 10.1002/adma.201605502

Han, 2016, J. Mater. Chem. A, 4, 10195, 10.1039/C6TA02297A

Li, 2017, ACS Appl. Mater. Interfaces, 9, 5982, 10.1021/acsami.6b14127

Pan, 2016, J. Mater. Chem. A, 4, 14675, 10.1039/C6TA06975D

Chen, 2016, ACS Appl. Mater. Interfaces, 8, 3892, 10.1021/acsami.5b10785

Liu, 2014, Angew. Chem., Int. Ed., 53, 6710, 10.1002/anie.201404161

Xiao, 2017, Energy Environ. Sci., 10, 2563, 10.1039/C7EE01917C

Yan, 2015, J. Power Sources, 284, 38, 10.1016/j.jpowsour.2015.03.017

Naguib, 2011, Adv. Mater., 23, 4248, 10.1002/adma.201102306

Naguib, 2014, Chem. Commun., 50, 7420, 10.1039/C4CC01646G

Yushin, 2005, Carbon, 43, 2075, 10.1016/j.carbon.2005.03.014

Xue, 2017, Adv. Mater., 29, 1604847, 10.1002/adma.201604847

Mas-Balleste, 2011, Nanoscale, 3, 20, 10.1039/C0NR00323A

Ma, 2010, Adv. Mater., 22, 5082, 10.1002/adma.201001722

Zou, 2016, ACS Appl. Mater. Interfaces, 8, 22280, 10.1021/acsami.6b08089

Chao, 2016, Nat. Commun., 7, 12122, 10.1038/ncomms12122

Liu, 2016, ACS Nano, 10, 8821, 10.1021/acsnano.6b04577

Augustyn, 2013, Nat. Mater., 12, 518, 10.1038/nmat3601

Simon, 2014, Science, 343, 1210, 10.1126/science.1249625

Huang, 2018, Small, 14, 1704367, 10.1002/smll.201704367