Alkali incorporation into Cu(In,Ga)Se2 determined by crystal orientation of Mo back contact: Implications for highly efficient photovoltaic devices

Solar Energy Materials and Solar Cells - Tập 188 - Trang 46-50 - 2018
Yunae Cho1, Inyoung Jeong1, Myeng Gil Gang2, Jin Hyeok Kim2, Soomin Song1, Young-Joo Eo1, Seung Kyu Ahn1, Dong Hyeop Shin1, Jun-Sik Cho1, Jae Ho Yun3, Jihye Gwak1, Kihwan Kim1
1Photovoltaics Laboratory, Korea Institute of Energy Research (KIER), Daejeon 34129, South Korea
2Department of Materials Science and Engineering, Chonnam National University, Gwangju 61188, South Korea
3New and Renewable Energy Institute, Korea Institute of Energy Research (KIER), Daejeon 34129, South Korea

Tài liệu tham khảo

Green, 2017, Solar cell efficiency tables (version 49), Prog. Photovolt., 25, 3, 10.1002/pip.2855 Jackson, 2016, Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%, Phys. Status Solidi-Rapid Res. Lett., 10, 583, 10.1002/pssr.201600199 Lin, 2018, Adjustment of alkali element incorporations in Cu(In,Ga)Se2 thin films with wet chemistry Mo oxide as a hosting reservoir, Sol. Energy Mater. Sol. Cells, 174, 16, 10.1016/j.solmat.2017.08.022 Lin, 2017, Engineering Na-transport to achieve high efficiency in ultrathin Cu(In,Ga)Se2 solar cells with controlled preferred orientation, Nano Energy, 41, 697, 10.1016/j.nanoen.2017.10.015 Li, 2016, Adhesion improvement and characterization of magnetron sputter deposited bilayer molybdenum thin films for rear contact application in CIGS solar cells, Int. J. Photoenergy, 2016, 1, 10.1155/2016/4970256 Yoon, 2014, Electrical properties of CIGS/Mo junctions as a function of MoSe2 orientation and Na doping, Prog. Photovolt., 22, 90, 10.1002/pip.2377 E.S. Mungan, X. Wang, M.A. Alam, Modeling the effects of Na incorporation on CIGS solar cells, IEEE 38th Photovoltaic Specialists Conference (PVSC), 2, 2013, pp. 451–456. Shin, 2013, Characterization of Cu(In,Ga)Se2 solar cells grown on Na-free glass with an NaF Layer on a Mo film, ECS J. Solid State Sci. Technol., 2, P248, 10.1149/2.002306jss Shin, 2012, Control of the preferred orientation of Cu(In,Ga)Se2 thin film by the surface modification of Mo film, J. Electrochem. Soc., 159, B1, 10.1149/2.009201jes Yoon, 2011, J.-h. Jeong, Optical analysis of the microstructure of a Mo back contact for Cu(In,Ga)Se2 solar cells and its effects on Mo film properties and Na diffusivity, Sol. Energy Mater. Sol. Cells, 95, 2959, 10.1016/j.solmat.2011.02.030 Caballero, 2010, Influence of Na on Cu(In,Ga)Se2 solar cells grown on polyimide substrates at low temperature: impact on the Cu(In,Ga)Se2/Mo interface, Appl. Phys. Lett., 96, 092104, 10.1063/1.3340459 Abou-Ras, 2005, Formation and characterisation of MoSe2 for Cu(In,Ga)Se2 based solar cells, Thin Solid Films, 480–481, 433, 10.1016/j.tsf.2004.11.098 Rockett, 2000, Na in selenized Cu(In,Ga)Se2 on Na-containing and Na-free glasses: distribution, grain structure, and device performances, Thin Solid Films, 372, 212, 10.1016/S0040-6090(00)01028-2 Klinkert, 2016, New insights into the Mo/Cu(In,Ga)Se2 interface in thin film solar cells: formation and properties of the MoSe2 interfacial layer, J. Chem. Phys., 145, 154702, 10.1063/1.4964677 Schlenker, 2005, Substrate influence on Cu(In,Ga)Se2 film texture, Thin Solid Films, 480–481, 29, 10.1016/j.tsf.2004.11.034 Puttnins, 2015, Impact of sodium on the device characteristics of low temperature-deposited Cu(In,Ga)Se2-solar cells, Thin Solid Films, 582, 85, 10.1016/j.tsf.2014.07.048 Puttnins, 2013, Effect of sodium on material and device quality in low temperature deposited Cu(In,Ga)Se2, Sol. Energy Mater. Sol. Cells, 119, 281, 10.1016/j.solmat.2013.08.029 Rudmann, 2005, Sodium incorporation strategies for CIGS growth at different temperatures, Thin Solid Films, 480–481, 55, 10.1016/j.tsf.2004.11.071 Rudmann, 2004, Efficiency enhancement of Cu(In,Ga)Se2 solar cells due to post-deposition Na incorporation, Appl. Phys. Lett., 84, 1129, 10.1063/1.1646758 Salomé, 2013, Na doping of CIGS solar cells using low sodium-doped Mo layer, IEEE J. Photovolt., 3, 509, 10.1109/JPHOTOV.2012.2226144 Murugan, 2000, Thermo-Raman investigations on structural transformations in hydrated MoO3, J. Mater. Chem., 10, 2157, 10.1039/b000811g Scheer, 2011 Schroder, 2006 Hehlen, 2015, Raman response of network modifier cations in alumino-silicate glasses, J. Phys. Chem. B, 119, 4093, 10.1021/jp5116299