Alkali incorporation into Cu(In,Ga)Se2 determined by crystal orientation of Mo back contact: Implications for highly efficient photovoltaic devices
Tài liệu tham khảo
Green, 2017, Solar cell efficiency tables (version 49), Prog. Photovolt., 25, 3, 10.1002/pip.2855
Jackson, 2016, Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%, Phys. Status Solidi-Rapid Res. Lett., 10, 583, 10.1002/pssr.201600199
Lin, 2018, Adjustment of alkali element incorporations in Cu(In,Ga)Se2 thin films with wet chemistry Mo oxide as a hosting reservoir, Sol. Energy Mater. Sol. Cells, 174, 16, 10.1016/j.solmat.2017.08.022
Lin, 2017, Engineering Na-transport to achieve high efficiency in ultrathin Cu(In,Ga)Se2 solar cells with controlled preferred orientation, Nano Energy, 41, 697, 10.1016/j.nanoen.2017.10.015
Li, 2016, Adhesion improvement and characterization of magnetron sputter deposited bilayer molybdenum thin films for rear contact application in CIGS solar cells, Int. J. Photoenergy, 2016, 1, 10.1155/2016/4970256
Yoon, 2014, Electrical properties of CIGS/Mo junctions as a function of MoSe2 orientation and Na doping, Prog. Photovolt., 22, 90, 10.1002/pip.2377
E.S. Mungan, X. Wang, M.A. Alam, Modeling the effects of Na incorporation on CIGS solar cells, IEEE 38th Photovoltaic Specialists Conference (PVSC), 2, 2013, pp. 451–456.
Shin, 2013, Characterization of Cu(In,Ga)Se2 solar cells grown on Na-free glass with an NaF Layer on a Mo film, ECS J. Solid State Sci. Technol., 2, P248, 10.1149/2.002306jss
Shin, 2012, Control of the preferred orientation of Cu(In,Ga)Se2 thin film by the surface modification of Mo film, J. Electrochem. Soc., 159, B1, 10.1149/2.009201jes
Yoon, 2011, J.-h. Jeong, Optical analysis of the microstructure of a Mo back contact for Cu(In,Ga)Se2 solar cells and its effects on Mo film properties and Na diffusivity, Sol. Energy Mater. Sol. Cells, 95, 2959, 10.1016/j.solmat.2011.02.030
Caballero, 2010, Influence of Na on Cu(In,Ga)Se2 solar cells grown on polyimide substrates at low temperature: impact on the Cu(In,Ga)Se2/Mo interface, Appl. Phys. Lett., 96, 092104, 10.1063/1.3340459
Abou-Ras, 2005, Formation and characterisation of MoSe2 for Cu(In,Ga)Se2 based solar cells, Thin Solid Films, 480–481, 433, 10.1016/j.tsf.2004.11.098
Rockett, 2000, Na in selenized Cu(In,Ga)Se2 on Na-containing and Na-free glasses: distribution, grain structure, and device performances, Thin Solid Films, 372, 212, 10.1016/S0040-6090(00)01028-2
Klinkert, 2016, New insights into the Mo/Cu(In,Ga)Se2 interface in thin film solar cells: formation and properties of the MoSe2 interfacial layer, J. Chem. Phys., 145, 154702, 10.1063/1.4964677
Schlenker, 2005, Substrate influence on Cu(In,Ga)Se2 film texture, Thin Solid Films, 480–481, 29, 10.1016/j.tsf.2004.11.034
Puttnins, 2015, Impact of sodium on the device characteristics of low temperature-deposited Cu(In,Ga)Se2-solar cells, Thin Solid Films, 582, 85, 10.1016/j.tsf.2014.07.048
Puttnins, 2013, Effect of sodium on material and device quality in low temperature deposited Cu(In,Ga)Se2, Sol. Energy Mater. Sol. Cells, 119, 281, 10.1016/j.solmat.2013.08.029
Rudmann, 2005, Sodium incorporation strategies for CIGS growth at different temperatures, Thin Solid Films, 480–481, 55, 10.1016/j.tsf.2004.11.071
Rudmann, 2004, Efficiency enhancement of Cu(In,Ga)Se2 solar cells due to post-deposition Na incorporation, Appl. Phys. Lett., 84, 1129, 10.1063/1.1646758
Salomé, 2013, Na doping of CIGS solar cells using low sodium-doped Mo layer, IEEE J. Photovolt., 3, 509, 10.1109/JPHOTOV.2012.2226144
Murugan, 2000, Thermo-Raman investigations on structural transformations in hydrated MoO3, J. Mater. Chem., 10, 2157, 10.1039/b000811g
Scheer, 2011
Schroder, 2006
Hehlen, 2015, Raman response of network modifier cations in alumino-silicate glasses, J. Phys. Chem. B, 119, 4093, 10.1021/jp5116299