Alkali-activated materials
Tóm tắt
Từ khóa
Tài liệu tham khảo
Provis, 2014, Geopolymers and related alkali-activated materials, Annu. Rev. Mater. Res., 44, 299, 10.1146/annurev-matsci-070813-113515
Provis, 2015, Advances in understanding alkali-activated materials, Cem. Concr. Res., 78A, 110, 10.1016/j.cemconres.2015.04.013
2014
Shi, 2000, High performance cementing materials from industrial slags - a review, Resour. Conserv. Recycl., 29, 195, 10.1016/S0921-3449(99)00060-9
Shi, 2011, New cements for the 21st century: the pursuit of an alternative to Portland cement, Cem. Concr. Res., 41, 750, 10.1016/j.cemconres.2011.03.016
Shi, 2006
Wang, 1995, Alkali-activated slag cement and concrete: a review of properties and problems, Adv. Cem. Res., 7, 93, 10.1680/adcr.1995.7.27.93
Davidovits, 2008
McLellan, 2011, Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement, J. Clean. Prod., 19, 1080, 10.1016/j.jclepro.2011.02.010
Bernal, 2016, Advances in near-neutral salts activation of blast furnace slags, RILEM Tech. Lett., 1, 39, 10.21809/rilemtechlett.2016.8
Purdon, 1940, The action of alkalis on blast-furnace slag, J. Soc. Chem. Ind- Trans. Commun., 59, 191
Glasby, 2015, EFC geopolymer concrete aircraft pavements at Brisbane West Wellcamp Airport, 1051
Andrews-Phaedonos, 2014
van Deventer, 2012, Technical and commercial progress in the adoption of geopolymer cement, Miner. Eng., 29, 89, 10.1016/j.mineng.2011.09.009
van Deventer, 2015, Is the market ready for the adoption of alkali-activated cements?
Krivenko, 1994, Alkaline cements, 11
Provis, 2014, Demonstration projects and applications in building and civil infrastructure, 309
Husbands, 1994
Muszynski, 1991, Corrosion protection of reinforcing steel using Pyrament blended cement concrete, 442
Ozyildirim, 1994
Attwell, 2014, Geopolymer concrete: a practical approach, 466
Wilkins, 2013, Is the grey stuff really ‘green’?, Build. Africa, 13, 13
Buchwald, 2012, ASCEM® cement - a contribution towards conserving primary resources and reducing the output of CO2, Cem. Intl., 10, 86
McIntosh, 2015, Selection and characterisation of geological materials for use as geopolymer precursors, Adv. Appl. Ceram., 114, 378, 10.1179/1743676115Y.0000000055
Hewlett, 2014, CEMFREE - the development of non-Portland cement based concretes, ICT Yearbook, 19, 45
Patel, 2012, Green concrete using 100% fly ash based hydraulic binder
Cross, 2005, Structural applications of 100 percent fly ash concrete
Sonafrank, 2010
Pontikes, 2013, Slags with a high Al and Fe content as precursors for inorganic polymers, Appl. Clay Sci., 73, 93, 10.1016/j.clay.2012.09.020
Komnitsas, 2007, Geopolymerisation of low calcium ferronickel slags, J. Mater. Sci., 42, 3073, 10.1007/s10853-006-0529-2
Guo, 2010, Use of heat-treated water treatment residuals in fly ash-based geopolymers, J. Am. Ceram. Soc., 93, 272, 10.1111/j.1551-2916.2009.03331.x
Longhi, 2016, Valorisation of a kaolin mining waste for the production of geopolymers, J. Clean. Prod., 115, 265, 10.1016/j.jclepro.2015.12.011
Dimas, 2009, Utilization of alumina red mud for synthesis of inorganic polymeric materials, Miner. Process. Extr. Metall. Rev., 30, 211, 10.1080/08827500802498199
Gong, 2000, Effect of phosphate on the hydration of alkali-activated red mud-slag cementitious material, Cem. Concr. Res., 30, 1013, 10.1016/S0008-8846(00)00260-X
Kumar, 2013, Development of paving blocks from synergistic use of red mud and fly ash using geopolymerization, Constr. Build. Mater., 38, 865, 10.1016/j.conbuildmat.2012.09.013
Donatello, 2014, The early age hydration reactions of a hybrid cement containing a very high content of coal bottom ash, J. Am. Ceram. Soc., 97, 929, 10.1111/jace.12751
Bernal, 2016, Management and valorisation of wastes through use in producing alkali-activated cement materials, J. Chem. Technol. Biotechnol., 91, 2365, 10.1002/jctb.4927
Škvarla, 2011, The potential use of fly ash with a high content of unburned carbon in geopolymers, Acta Geodyn. Geomater., 8, 123
Provis, 2009, Activating solution chemistry for geopolymers, 50
Feng, 2012, Thermal activation of albite for the synthesis of one-part mix geopolymers, J. Am. Ceram. Soc., 95, 565, 10.1111/j.1551-2916.2011.04925.x
Gluth, 2013, Geopolymerization of a silica residue from waste treatment of chlorosilane production, Mater. Struct., 46, 1291, 10.1617/s11527-012-9972-5
Ke, 2015, One-part geopolymers based on thermally treated red mud/NaOH blends, J. Am. Ceram. Soc., 98, 5, 10.1111/jace.13231
Koloušek, 2007, Preparation, structure and hydrothermal stability of alternative (sodium silicate-free) geopolymers, J. Mater. Sci., 42, 9267, 10.1007/s10853-007-1910-5
Yang, 2009, Workability loss and compressive strength development of cementless mortars activated by combination of sodium silicate and sodium hydroxide, J. Mater. Civ. Eng., 21, 119, 10.1061/(ASCE)0899-1561(2009)21:3(119)
Habert, 2016, Recent update on the environmental impact of geopolymers, RILEM Tech. Lett., 1, 17, 10.21809/rilemtechlett.2016.6
Pacheco-Torgal, 2012, Durability of alkali-activated binders: a clear advantage over Portland cement or an unproven issue?, Constr. Build. Mater., 30, 400, 10.1016/j.conbuildmat.2011.12.017
Bernal, 2014, Durability of alkali-activated materials: progress and perspectives, J. Am. Ceram. Soc., 97, 997, 10.1111/jace.12831
Gifford, 1996, Freeze-thaw durability of activated blast furnace slag cement concrete, ACI Mater. J., 93, 242
Bernal, 2012, Accelerated carbonation testing of alkali-activated binders significantly underestimates service life: the role of pore solution chemistry, Cem. Concr. Res., 42, 1317, 10.1016/j.cemconres.2012.07.002
Bernal, 2014, Natural carbonation of aged alkali-activated slag concretes, Mater. Struct., 47, 693, 10.1617/s11527-013-0089-2
Bondar, 2012, Oxygen and chloride permeability of alkali-activated natural pozzolan concrete, ACI Mater. J., 104, 53
Ismail, 2013, Influence of fly ash on the water and chloride permeability of alkali-activated slag mortars and concretes, Constr. Build. Mater., 48, 1187, 10.1016/j.conbuildmat.2013.07.106
Ravikumar, 2013, Electrically induced chloride ion transport in alkali activated slag concretes and the influence of microstructure, Cem. Concr. Res., 47, 31, 10.1016/j.cemconres.2013.01.007
Buchwald, 2015, Purdocement: application of alkali-activated slag cement in Belgium in the 1950s, Mater. Struct., 48, 501, 10.1617/s11527-013-0200-8
Xu, 2008, Characterization of aged slag concretes, ACI Mater. J., 105, 131
Shi, 2015, A review on alkali-aggregate reactions in alkali-activated mortars/concretes made with alkali-reactive aggregates, Mater. Struct., 48, 621, 10.1617/s11527-014-0505-2
Pouhet, 2015, Alkali–silica reaction in metakaolin-based geopolymer mortar, Mater. Struct., 48, 571, 10.1617/s11527-014-0445-x
Krivenko, 2014, Mechanism of preventing the alkali-aggregate reaction in the alkali activated cement concretes, Cem. Concr. Compos., 45, 157, 10.1016/j.cemconcomp.2013.10.003
Gifford, 1996, Alkali-silica reaction (ASR) and alkali-carbonate reaction (ACR) in activated blast furnace slag cement (ABFSC) concrete, Cem. Concr. Res., 26, 21, 10.1016/0008-8846(95)00182-4
Fernández-Jiménez, 2002, The alkali-silica reaction in alkali-activated granulated slag mortars with reactive aggregate, Cem. Concr. Res., 32, 1019, 10.1016/S0008-8846(01)00745-1
Najafi Kani, 2012, Efflorescence control in geopolymer binders based on natural pozzolan, Cem. Concr. Compos., 34, 25, 10.1016/j.cemconcomp.2011.07.007
Zhang, 2014, Fly ash-based geopolymers: the relationship between composition, pore structure and efflorescence, Cem. Concr. Res., 64, 30, 10.1016/j.cemconres.2014.06.004
Škvára, 2009, Aluminosilicate polymers - influence of elevated temperatures, efflorescence, Ceramics-Silikáty, 53, 276
Bolen, 2015
Pu, 1992, Study on retardation of setting of alkali activated slag concrete, Cement, 10, 32
Wu, 2011, Research on set retarder of high and super high strength alkali -activated slag cement and concrete, Key Eng. Mater., 477, 164, 10.4028/www.scientific.net/KEM.477.164
Kovalchuk, 2007, Alkali-activated fly ash: effect of thermal curing conditions on mechanical and microstructural development – part II, Fuel, 86, 315, 10.1016/j.fuel.2006.07.010
Marchon, 2013, Molecular design of comb-shaped polycarboxylate dispersants for environmentally friendly concrete, Soft Matter, 9, 10719, 10.1039/c3sm51030a
Kashani, 2014, Effect of molecular architecture of polycarboxylate ethers on plasticizing performance in alkali activated slag paste, J. Mater. Sci., 49, 2761, 10.1007/s10853-013-7979-0
Kashani, 2014, The interrelationship between surface chemistry and rheology in alkali activated slag paste, Constr. Build. Mater., 65, 583, 10.1016/j.conbuildmat.2014.04.127
Habert, 2011, An environmental evaluation of geopolymer based concrete production: reviewing current research trends, J. Clean. Prod., 19, 1229, 10.1016/j.jclepro.2011.03.012
Habert, 2013, A method for allocation according to the economic behaviour in the EU-ETS for by-products used in cement industry, Int. J. Life Cycle Assess., 18, 113, 10.1007/s11367-012-0464-1
Weil, 2009, Life-cycle analysis of geopolymers, 194
Ng, 2012, Sustainability with ultra-high performance and geopolymer concrete construction, 81
Net Balance Foundation, 2007
Stengel, 2009
Van den Heede, 2012, Environmental impact and life cycle assessment (LCA) of traditional and ‘green’ concretes: literature review and theoretical calculations, Cem. Concr. Compos., 34, 431, 10.1016/j.cemconcomp.2012.01.004
Heath, 2014, Minimising the global warming potential of clay based geopolymers, J. Clean. Prod., 78, 75, 10.1016/j.jclepro.2014.04.046
McGuire, 2011, Geopolymer concrete: is there an alternative and viable technology in the concrete sector which reduces carbon emissions?
Moseson, 2012, High volume limestone alkali-activated cement developed by design of experiment, Cem. Concr. Compos., 34, 328, 10.1016/j.cemconcomp.2011.11.004
Turner, 2013, Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete, Constr. Build. Mater., 43, 125, 10.1016/j.conbuildmat.2013.01.023
Fawer, 1999, Life cycle inventories for the production of sodium silicates, Int. J. Life Cycle Assess., 4, 207, 10.1007/BF02979498
Mackechnie, 2015, Thermal performance of variable density wall panels made using Portland cement or inorganic polymer concrete, Mater. Struct., 48, 643, 10.1617/s11527-013-0206-2
Duxson, 2006, Thermal conductivity of metakaolin geopolymers used as a first approximation for determining gel interconnectivity, Ind. Eng. Chem. Res., 45, 7781, 10.1021/ie060187o
Zhang, 2014, Geopolymer foam concrete: an emerging material for sustainable construction, Constr. Build. Mater., 56, 113, 10.1016/j.conbuildmat.2014.01.081
Zhang, 2015, Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete, Cem. Concr. Compos., 62, 97, 10.1016/j.cemconcomp.2015.03.013
Strozi Cilla, 2014, Geopolymer foams by gelcasting, Ceram. Int., 40, 5723, 10.1016/j.ceramint.2013.11.011
Hlaváček, 2015, Inorganic foams made from alkali-activated fly ash: mechanical, chemical and physical properties, J. Eur. Ceram. Soc., 35, 703, 10.1016/j.jeurceramsoc.2014.08.024
Masi, 2014, A comparison between different foaming methods for the synthesis of light weight geopolymers, Ceram. Int., 40, 13891, 10.1016/j.ceramint.2014.05.108
Prud'homme, 2010, Silica fume as porogent agent in geo-materials at low temperature, J. Eur. Ceram. Soc., 30, 1641, 10.1016/j.jeurceramsoc.2010.01.014
Vaou, 2010, Thermal insulating foamy geopolymers from perlite, Miner. Eng., 23, 1146, 10.1016/j.mineng.2010.07.015
Van Deventer, 2013, Development, standardization and applications of alkali-activated concretes, 196
IPR, Milliken Infrastructure Systems, Ecocast Advanced Geopolymer Solutions, http://www.teamipr.com/pdf/ecocast.pdf, Riverside, CA, 2015.
Allouche, 2013, Geopolymer mortar and method, U.S. Patent
Talling, 2002, Geopolymers give fire safety to cruise ships
Kovalchuk, 2009, Producing fire- and heat-resistant geopolymers, 229
Lyon, 1997, Fire-resistant aluminosilicate composites, Fire Mater., 21, 67, 10.1002/(SICI)1099-1018(199703)21:2<67::AID-FAM596>3.0.CO;2-N
Schweizerisches Ingenieur and Architektenverein (SIA), 2014
British Standards Institute, BSI PAS 8820:2016, 2016
ASTM International, 2011
Standardization Administration of China, GB/T 29423-2012, 2012
Kavalerova, 2014, New national standard of Ukraine for heavy-weight alkali activated cement concretes, 449