Alkali-activated materials

Cement and Concrete Research - Tập 114 - Trang 40-48 - 2018
John L. Provis1
1Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Provis, 2014, Geopolymers and related alkali-activated materials, Annu. Rev. Mater. Res., 44, 299, 10.1146/annurev-matsci-070813-113515

Provis, 2015, Advances in understanding alkali-activated materials, Cem. Concr. Res., 78A, 110, 10.1016/j.cemconres.2015.04.013

2014

Shi, 2000, High performance cementing materials from industrial slags - a review, Resour. Conserv. Recycl., 29, 195, 10.1016/S0921-3449(99)00060-9

Shi, 2011, New cements for the 21st century: the pursuit of an alternative to Portland cement, Cem. Concr. Res., 41, 750, 10.1016/j.cemconres.2011.03.016

Shi, 2006

Wang, 1995, Alkali-activated slag cement and concrete: a review of properties and problems, Adv. Cem. Res., 7, 93, 10.1680/adcr.1995.7.27.93

Davidovits, 2008

McLellan, 2011, Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement, J. Clean. Prod., 19, 1080, 10.1016/j.jclepro.2011.02.010

Bernal, 2016, Advances in near-neutral salts activation of blast furnace slags, RILEM Tech. Lett., 1, 39, 10.21809/rilemtechlett.2016.8

Purdon, 1940, The action of alkalis on blast-furnace slag, J. Soc. Chem. Ind- Trans. Commun., 59, 191

Glasby, 2015, EFC geopolymer concrete aircraft pavements at Brisbane West Wellcamp Airport, 1051

Andrews-Phaedonos, 2014

van Deventer, 2012, Technical and commercial progress in the adoption of geopolymer cement, Miner. Eng., 29, 89, 10.1016/j.mineng.2011.09.009

van Deventer, 2015, Is the market ready for the adoption of alkali-activated cements?

Krivenko, 1994, Alkaline cements, 11

Provis, 2014, Demonstration projects and applications in building and civil infrastructure, 309

Husbands, 1994

Muszynski, 1991, Corrosion protection of reinforcing steel using Pyrament blended cement concrete, 442

Ozyildirim, 1994

Attwell, 2014, Geopolymer concrete: a practical approach, 466

Wilkins, 2013, Is the grey stuff really ‘green’?, Build. Africa, 13, 13

Buchwald, 2012, ASCEM® cement - a contribution towards conserving primary resources and reducing the output of CO2, Cem. Intl., 10, 86

McIntosh, 2015, Selection and characterisation of geological materials for use as geopolymer precursors, Adv. Appl. Ceram., 114, 378, 10.1179/1743676115Y.0000000055

Hewlett, 2014, CEMFREE - the development of non-Portland cement based concretes, ICT Yearbook, 19, 45

Patel, 2012, Green concrete using 100% fly ash based hydraulic binder

Cross, 2005, Structural applications of 100 percent fly ash concrete

Sonafrank, 2010

Pontikes, 2013, Slags with a high Al and Fe content as precursors for inorganic polymers, Appl. Clay Sci., 73, 93, 10.1016/j.clay.2012.09.020

Komnitsas, 2007, Geopolymerisation of low calcium ferronickel slags, J. Mater. Sci., 42, 3073, 10.1007/s10853-006-0529-2

Guo, 2010, Use of heat-treated water treatment residuals in fly ash-based geopolymers, J. Am. Ceram. Soc., 93, 272, 10.1111/j.1551-2916.2009.03331.x

Longhi, 2016, Valorisation of a kaolin mining waste for the production of geopolymers, J. Clean. Prod., 115, 265, 10.1016/j.jclepro.2015.12.011

Dimas, 2009, Utilization of alumina red mud for synthesis of inorganic polymeric materials, Miner. Process. Extr. Metall. Rev., 30, 211, 10.1080/08827500802498199

Gong, 2000, Effect of phosphate on the hydration of alkali-activated red mud-slag cementitious material, Cem. Concr. Res., 30, 1013, 10.1016/S0008-8846(00)00260-X

Kumar, 2013, Development of paving blocks from synergistic use of red mud and fly ash using geopolymerization, Constr. Build. Mater., 38, 865, 10.1016/j.conbuildmat.2012.09.013

Donatello, 2014, The early age hydration reactions of a hybrid cement containing a very high content of coal bottom ash, J. Am. Ceram. Soc., 97, 929, 10.1111/jace.12751

Bernal, 2016, Management and valorisation of wastes through use in producing alkali-activated cement materials, J. Chem. Technol. Biotechnol., 91, 2365, 10.1002/jctb.4927

Škvarla, 2011, The potential use of fly ash with a high content of unburned carbon in geopolymers, Acta Geodyn. Geomater., 8, 123

Provis, 2009, Activating solution chemistry for geopolymers, 50

Feng, 2012, Thermal activation of albite for the synthesis of one-part mix geopolymers, J. Am. Ceram. Soc., 95, 565, 10.1111/j.1551-2916.2011.04925.x

Gluth, 2013, Geopolymerization of a silica residue from waste treatment of chlorosilane production, Mater. Struct., 46, 1291, 10.1617/s11527-012-9972-5

Ke, 2015, One-part geopolymers based on thermally treated red mud/NaOH blends, J. Am. Ceram. Soc., 98, 5, 10.1111/jace.13231

Koloušek, 2007, Preparation, structure and hydrothermal stability of alternative (sodium silicate-free) geopolymers, J. Mater. Sci., 42, 9267, 10.1007/s10853-007-1910-5

Yang, 2009, Workability loss and compressive strength development of cementless mortars activated by combination of sodium silicate and sodium hydroxide, J. Mater. Civ. Eng., 21, 119, 10.1061/(ASCE)0899-1561(2009)21:3(119)

Habert, 2016, Recent update on the environmental impact of geopolymers, RILEM Tech. Lett., 1, 17, 10.21809/rilemtechlett.2016.6

Pacheco-Torgal, 2012, Durability of alkali-activated binders: a clear advantage over Portland cement or an unproven issue?, Constr. Build. Mater., 30, 400, 10.1016/j.conbuildmat.2011.12.017

Bernal, 2014, Durability of alkali-activated materials: progress and perspectives, J. Am. Ceram. Soc., 97, 997, 10.1111/jace.12831

Gifford, 1996, Freeze-thaw durability of activated blast furnace slag cement concrete, ACI Mater. J., 93, 242

Bernal, 2012, Accelerated carbonation testing of alkali-activated binders significantly underestimates service life: the role of pore solution chemistry, Cem. Concr. Res., 42, 1317, 10.1016/j.cemconres.2012.07.002

Bernal, 2014, Natural carbonation of aged alkali-activated slag concretes, Mater. Struct., 47, 693, 10.1617/s11527-013-0089-2

Bondar, 2012, Oxygen and chloride permeability of alkali-activated natural pozzolan concrete, ACI Mater. J., 104, 53

Ismail, 2013, Influence of fly ash on the water and chloride permeability of alkali-activated slag mortars and concretes, Constr. Build. Mater., 48, 1187, 10.1016/j.conbuildmat.2013.07.106

Ravikumar, 2013, Electrically induced chloride ion transport in alkali activated slag concretes and the influence of microstructure, Cem. Concr. Res., 47, 31, 10.1016/j.cemconres.2013.01.007

Buchwald, 2015, Purdocement: application of alkali-activated slag cement in Belgium in the 1950s, Mater. Struct., 48, 501, 10.1617/s11527-013-0200-8

Xu, 2008, Characterization of aged slag concretes, ACI Mater. J., 105, 131

Shi, 2015, A review on alkali-aggregate reactions in alkali-activated mortars/concretes made with alkali-reactive aggregates, Mater. Struct., 48, 621, 10.1617/s11527-014-0505-2

Pouhet, 2015, Alkali–silica reaction in metakaolin-based geopolymer mortar, Mater. Struct., 48, 571, 10.1617/s11527-014-0445-x

Krivenko, 2014, Mechanism of preventing the alkali-aggregate reaction in the alkali activated cement concretes, Cem. Concr. Compos., 45, 157, 10.1016/j.cemconcomp.2013.10.003

Gifford, 1996, Alkali-silica reaction (ASR) and alkali-carbonate reaction (ACR) in activated blast furnace slag cement (ABFSC) concrete, Cem. Concr. Res., 26, 21, 10.1016/0008-8846(95)00182-4

Fernández-Jiménez, 2002, The alkali-silica reaction in alkali-activated granulated slag mortars with reactive aggregate, Cem. Concr. Res., 32, 1019, 10.1016/S0008-8846(01)00745-1

Najafi Kani, 2012, Efflorescence control in geopolymer binders based on natural pozzolan, Cem. Concr. Compos., 34, 25, 10.1016/j.cemconcomp.2011.07.007

Zhang, 2014, Fly ash-based geopolymers: the relationship between composition, pore structure and efflorescence, Cem. Concr. Res., 64, 30, 10.1016/j.cemconres.2014.06.004

Škvára, 2009, Aluminosilicate polymers - influence of elevated temperatures, efflorescence, Ceramics-Silikáty, 53, 276

Bolen, 2015

Pu, 1992, Study on retardation of setting of alkali activated slag concrete, Cement, 10, 32

Wu, 2011, Research on set retarder of high and super high strength alkali -activated slag cement and concrete, Key Eng. Mater., 477, 164, 10.4028/www.scientific.net/KEM.477.164

Kovalchuk, 2007, Alkali-activated fly ash: effect of thermal curing conditions on mechanical and microstructural development – part II, Fuel, 86, 315, 10.1016/j.fuel.2006.07.010

Marchon, 2013, Molecular design of comb-shaped polycarboxylate dispersants for environmentally friendly concrete, Soft Matter, 9, 10719, 10.1039/c3sm51030a

Kashani, 2014, Effect of molecular architecture of polycarboxylate ethers on plasticizing performance in alkali activated slag paste, J. Mater. Sci., 49, 2761, 10.1007/s10853-013-7979-0

Kashani, 2014, The interrelationship between surface chemistry and rheology in alkali activated slag paste, Constr. Build. Mater., 65, 583, 10.1016/j.conbuildmat.2014.04.127

Habert, 2011, An environmental evaluation of geopolymer based concrete production: reviewing current research trends, J. Clean. Prod., 19, 1229, 10.1016/j.jclepro.2011.03.012

Habert, 2013, A method for allocation according to the economic behaviour in the EU-ETS for by-products used in cement industry, Int. J. Life Cycle Assess., 18, 113, 10.1007/s11367-012-0464-1

Weil, 2009, Life-cycle analysis of geopolymers, 194

Ng, 2012, Sustainability with ultra-high performance and geopolymer concrete construction, 81

Net Balance Foundation, 2007

Stengel, 2009

Van den Heede, 2012, Environmental impact and life cycle assessment (LCA) of traditional and ‘green’ concretes: literature review and theoretical calculations, Cem. Concr. Compos., 34, 431, 10.1016/j.cemconcomp.2012.01.004

Heath, 2014, Minimising the global warming potential of clay based geopolymers, J. Clean. Prod., 78, 75, 10.1016/j.jclepro.2014.04.046

McGuire, 2011, Geopolymer concrete: is there an alternative and viable technology in the concrete sector which reduces carbon emissions?

Moseson, 2012, High volume limestone alkali-activated cement developed by design of experiment, Cem. Concr. Compos., 34, 328, 10.1016/j.cemconcomp.2011.11.004

Turner, 2013, Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete, Constr. Build. Mater., 43, 125, 10.1016/j.conbuildmat.2013.01.023

Fawer, 1999, Life cycle inventories for the production of sodium silicates, Int. J. Life Cycle Assess., 4, 207, 10.1007/BF02979498

Mackechnie, 2015, Thermal performance of variable density wall panels made using Portland cement or inorganic polymer concrete, Mater. Struct., 48, 643, 10.1617/s11527-013-0206-2

Duxson, 2006, Thermal conductivity of metakaolin geopolymers used as a first approximation for determining gel interconnectivity, Ind. Eng. Chem. Res., 45, 7781, 10.1021/ie060187o

Zhang, 2014, Geopolymer foam concrete: an emerging material for sustainable construction, Constr. Build. Mater., 56, 113, 10.1016/j.conbuildmat.2014.01.081

Zhang, 2015, Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete, Cem. Concr. Compos., 62, 97, 10.1016/j.cemconcomp.2015.03.013

Strozi Cilla, 2014, Geopolymer foams by gelcasting, Ceram. Int., 40, 5723, 10.1016/j.ceramint.2013.11.011

Hlaváček, 2015, Inorganic foams made from alkali-activated fly ash: mechanical, chemical and physical properties, J. Eur. Ceram. Soc., 35, 703, 10.1016/j.jeurceramsoc.2014.08.024

Masi, 2014, A comparison between different foaming methods for the synthesis of light weight geopolymers, Ceram. Int., 40, 13891, 10.1016/j.ceramint.2014.05.108

Prud'homme, 2010, Silica fume as porogent agent in geo-materials at low temperature, J. Eur. Ceram. Soc., 30, 1641, 10.1016/j.jeurceramsoc.2010.01.014

Vaou, 2010, Thermal insulating foamy geopolymers from perlite, Miner. Eng., 23, 1146, 10.1016/j.mineng.2010.07.015

Van Deventer, 2013, Development, standardization and applications of alkali-activated concretes, 196

IPR, Milliken Infrastructure Systems, Ecocast Advanced Geopolymer Solutions, http://www.teamipr.com/pdf/ecocast.pdf, Riverside, CA, 2015.

Allouche, 2013, Geopolymer mortar and method, U.S. Patent

Talling, 2002, Geopolymers give fire safety to cruise ships

Kovalchuk, 2009, Producing fire- and heat-resistant geopolymers, 229

Lyon, 1997, Fire-resistant aluminosilicate composites, Fire Mater., 21, 67, 10.1002/(SICI)1099-1018(199703)21:2<67::AID-FAM596>3.0.CO;2-N

Schweizerisches Ingenieur and Architektenverein (SIA), 2014

British Standards Institute, BSI PAS 8820:2016, 2016

ASTM International, 2011

Standardization Administration of China, GB/T 29423-2012, 2012

Kavalerova, 2014, New national standard of Ukraine for heavy-weight alkali activated cement concretes, 449