Alkali Activation of Ladle Slag from Steel-Making Process

Journal of Sustainable Metallurgy - Tập 3 Số 2 - Trang 300-310 - 2017
Elijah Adesanya1, Katja Ohenoja1, Päivö Kinnunen1, Mirja Illikainen1
1Fibre and Particle Engineering Unit, University of Oulu, PO Box 4300, 90014, Oulu, Finland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Euroslag (2012). http://www.euroslag.com/products/statistics/2012/ . Accessed 8 Mar 2016

Serjun VZ, Mirtič B, Mladenovič A (2013) Evaluation of ladle slag as a potential material for building and civil engineering. Mater Tehnol 47:543–550

Tracz T, Hager I, Sideris KK, et al (2015) In: 7th Scientific-technical conference on material problems in civil engineering MATBUD’2015Production of durable self-compacting concrete using ladle furnace slag (LFS) as filler material. Procedia Engineering, vol 108, pp 592–597. doi: 10.1016/j.proeng.2015.06.184

Manso JM, Rodriguez Á, Aragón Á, Gonzalez JJ (2011) The durability of masonry mortars made with ladle furnace slag. Constr Build Mater 25:3508–3519. doi: 10.1016/j.conbuildmat.2011.03.044

Manso JM, Losañez M, Polanco JA, Gonzalez JJ (2005) Ladle Furnace Slag in Construction. J Mater Civ Eng 17:513–518. doi: 10.1061/(ASCE)0899-1561(2005)17:5(513)

Andreas L, Diener S, Lagerkvist A (2014) Steel slags in a landfill top cover – Experiences from a full-scale experiment. Waste Manag 34:692–701. doi: 10.1016/j.wasman.2013.12.003

Koizumi S, Miki T, Nagasaka T (2015) Enrichment of phosphorus oxide in steelmaking slag by utilizing capillary action. J Sustain Metall. doi: 10.1007/s40831-015-0035-3

Buchwald A, Hilbig H, Kaps C (2007) Alkali-activated metakaolin-slag blends—performance and structure in dependence of their composition. J Mater Sci 42:3024–3032. doi: 10.1007/s10853-006-0525-6

Guerrieri M, Sanjayan J, Collins F (2009) Residual strength properties of sodium silicate alkali activated slag paste exposed to elevated temperatures. Mater Struct 43:765–773. doi: 10.1617/s11527-009-9546-3

Guerrieri M, Sanjayan JG (2010) Behavior of combined fly ash/slag-based geopolymers when exposed to high temperatures. Fire Mater 34:163–175. doi: 10.1002/fam.1014

Provis JL, Bernal SA (2014) Geopolymers and related alkali-activated materials. Annu Rev Mater Res 44:299–327. doi: 10.1146/annurev-matsci-070813-113515

Pacheco-Torgal F, Labrincha J, Leonelli C et al (2014) Handbook of alkali-activated cements, mortars and concretes. Elsevier, Cambridge

Yip CK, Lukey GC, Provis JL, van Deventer JSJ (2008) Effect of calcium silicate sources on geopolymerisation. Cem Concr Res 38:554–564. doi: 10.1016/j.cemconres.2007.11.001

Myers RJ, Bernal SA, San Nicolas R, Provis JL (2013) Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the cross-linked substituted tobermorite model. Langmuir 29:5294–5306. doi: 10.1021/la4000473

Provis JL (2013) Geopolymers and other alkali activated materials: why, how, and what? Mater Struct 47:11–25. doi: 10.1617/s11527-013-0211-5

Chi M (2012) Effects of dosage of alkali-activated solution and curing conditions on the properties and durability of alkali-activated slag concrete. Constr Build Mater 35:240–245. doi: 10.1016/j.conbuildmat.2012.04.005

Kriskova L, Pontikes Y, Zhang F et al (2014) Influence of mechanical and chemical activation on the hydraulic properties of gamma dicalcium silicate. Cem Concr Res 55:59–68. doi: 10.1016/j.cemconres.2013.10.004

Salman M, Cizer Ö, Pontikes Y et al (2015) Cementitious binders from activated stainless steel refining slag and the effect of alkali solutions. J Hazard Mater 286:211–219. doi: 10.1016/j.jhazmat.2014.12.046

Salman M, Cizer Ö, Pontikes Y et al (2014) Effect of curing temperatures on the alkali activation of crystalline continuous casting stainless steel slag. Constr Build Mater 71:308–316. doi: 10.1016/j.conbuildmat.2014.08.067

Kriskova L, Pontikes Y, Cizer Ö et al (2012) Effect of mechanical activation on the hydraulic properties of stainless steel slags. Cem Concr Res 42:778–788. doi: 10.1016/j.cemconres.2012.02.016

Salman M, Cizer Ö, Pontikes Y et al (2015) Alkali activation of AOD stainless steel slag under steam curing conditions. J Am Ceram Soc 98:3062–3074. doi: 10.1111/jace.13776

Bignozzi MC, Manzi S, Lancellotti I et al (2013) Mix-design and characterization of alkali activated materials based on metakaolin and ladle slag. Appl Clay Sci 73:78–85. doi: 10.1016/j.clay.2012.09.015

Lancellotti I, Ponzoni C, Bignozzi MC et al (2014) Incinerator bottom ash and ladle slag for geopolymers preparation. Waste Biomass Valoriz 5:393–401. doi: 10.1007/s12649-014-9299-2

Natali Murri A, Rickard WDA, Bignozzi MC, Van Riessen A (2013) High temperature behaviour of ambient cured alkali-activated materials based on ladle slag. Cem Concr Res 43:51–61. doi: 10.1016/j.cemconres.2012.09.011

Natali A, Manzi S, Bignozzi MC (2011) Novel fiber-reinforced composite materials based on sustainable geopolymer matrix. Procedia Eng 21:1124–1131. doi: 10.1016/j.proeng.2011.11.2120

Bougara A, Lynsdale C, Ezziane K (2009) Activation of Algerian slag in mortars. Constr Build Mater 23:542–547. doi: 10.1016/j.conbuildmat.2007.10.012

Torgal FP, Jalali S (2011) Eco-efficient construction and building materials. Springer, London

SFS Online (2009) SFS 5513 - Brick Tile Testing (Finnish standard). https://online.sfs.fi/fi/index/tuotteet/SFS/SFS/ID2/5/119637.html.stx . Accessed 22 Dec 2015

Garcia-Lodeiro I, Palomo A, Fernández-Jiménez A (2014) An overview of the chemistry of alkali-activated cement-based binders. In: Handbook of Alkali-activated cements, mortars and concretes, pp 19–47

Majumbar AJ, Singh B, Edmonds RN (1989) Hydration of mixtures of C12A7 and granulated blastfurnace slag. Cem Concr Res 19:848–856. doi: 10.1016/0008-8846(89)90097-5

Adolfsson D, Robinson R, Engström F, Björkman B (2011) Influence of mineralogy on the hydraulic properties of ladle slag. Cem Concr Res 41:865–871. doi: 10.1016/j.cemconres.2011.04.003

Collins F, Sanjayan JG (1999) Strength and shrinkage properties of alkali-activated slag concrete containing porous coarse aggregate. Cem Concr Res 29:607–610. doi: 10.1016/S0008-8846(98)00203-8

Shi C, Roy D, Krivenko P (2006) Alkali-activated cements and concretes. CRC Press, Boca Raton

Nikolić I, Drinčić A, Djurović D et al (2016) Kinetics of electric arc furnace slag leaching in alkaline solutions. Constr Build Mater 108:1–9. doi: 10.1016/j.conbuildmat.2016.01.038

Yu P, Kirkpatrick RJ, Poe B et al (1999) Structure of Calcium Silicate Hydrate (C-S-H): near-, Mid-, and Far-Infrared Spectroscopy. J Am Ceram Soc 82:742–748. doi: 10.1111/j.1151-2916.1999.tb01826.x

Lecomte I, Henrist C, Liégeois M et al (2006) (Micro)-structural comparison between geopolymers, alkali-activated slag cement and Portland cement. J Eur Ceram Soc 26:3789–3797. doi: 10.1016/j.jeurceramsoc.2005.12.021

Zhang Z, Wang H, Provis JL et al (2012) Quantitative kinetic and structural analysis of geopolymers. Part 1. The activation of metakaolin with sodium hydroxide. Thermochim Acta 539:23–33

Gao X, Yu QL, Brouwers HJH (2015) Characterization of alkali activated slag–fly ash blends containing nano-silica. Constr Build Mater 98:397–406. doi: 10.1016/j.conbuildmat.2015.08.086

Garcia-Lodeiro I, Palomo A, Fernández-Jiménez A, Macphee DE (2011) Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O. Cem Concr Res 41:923–931. doi: 10.1016/j.cemconres.2011.05.006

Bernal SA, Provis JL, Rose V, Mejía de Gutierrez R (2011) Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cem Concr Compos 33:46–54. doi: 10.1016/j.cemconcomp.2010.09.004

Kupaei RH, Alengaram UJ, Jumaat MZ et al (2014) The effect of different parameters on the development of compressive strength of oil palm shell geopolymer concrete. Sci World J Sci World J 2014:e898536. doi: 10.1155/2014/898536

Qureshi MN, Ghosh S (2013) Effect of Alkali Content on Strength and Microstructure of GGBFS Paste. Glob J Res Eng 13

Zhang Z, Yang T, Wang H (2014) The effect of efflorescence on the mechanical properties of fly ash-based geopolymer binders. In: 23rd Australas conference on the mechanics of structures and materials ACMSM23, pp 107–112

Posi P, Lertnimoolchai S, Sata V, Chindaprasirt P (2013) Pressed lightweight concrete containing calcined diatomite aggregate. Constr Build Mater 47:896–901. doi: 10.1016/j.conbuildmat.2013.05.094

Jud Sierra E, Miller SA, Sakulich AR et al (2010) Pozzolanic activity of diatomaceous earth. J Am Ceram Soc 93:3406–3410. doi: 10.1111/j.1551-2916.2010.03886.x

Qureshi MN, Ghosh S (2014) Effect of silicate content on the properties of Alkali-activated blast furnace slag paste. Arab J Sci Eng 39:5905–5916. doi: 10.1007/s13369-014-1172-x

Petrović DV, Mitrović ČB, Trišovic NR, Golubović ZZ (2011) On the particles size distributions of diatomaceous earth and perlite granulations. Stroj Vestn J Mech Eng 57:843–850. doi: 10.5545/sv-jme.2010.050

Pimraksa K, Chindaprasirt P (2009) Lightweight bricks made of diatomaceous earth, lime and gypsum. Ceram Int 35:471–478. doi: 10.1016/j.ceramint.2008.01.013