Algorithms for the Split Variational Inequality Problem
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)
Bauschke, H.H., Combettes, P.L.: A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces. Math. Oper. Res. 26, 248–264 (2001)
Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods. Prentice-Hall, Englwood Cliffs (1989)
Browder, F.E.: Fixed point theorems for noncompact mappings in Hilbert space. Proc. Natl. Acad. Sci. USA 53, 1272–1276 (1965)
Byrne, C.L.: Iterative projection onto convex sets using multiple Bregman distances. Inverse Probl. 15, 1295–1313 (1999)
Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18, 441–453 (2002)
Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20 103–120 (2004)
Cegielski, A.: Generalized relaxations of nonexpansive operators and convex feasibility problems. Contemp. Math. 513, 111–123 (2010)
Cegielski, A., Censor, Y.: Opial-type theorems and the common fixed point problem. In: Bauschke, H., Burachik, R., Combettes, P., Elser, V., Luke, R., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 155–183. Springer, New York (2011)
Censor, Y., Altschule, M.D., Powlis, W.D.: On the use of Cimmino’s simultaneous projections method for computing a solution of the inverse problem in radiation therapy treatment planning. Inverse Probl. 4, 607–623 (1988)
Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol. 51, 2353–2365 (2006)
Censor, Y., Chen, W., Combettes, P.L., Davidi, R., Herman, G.T.: On the effectiveness of projection methods for convex feasibility problems with linear inequality constraints. Comput. Optim. Appl. (2011, accepted for publication). doi: 10.1007/s10589-011-9401-7 . http://arxiv.org/abs/0912.4367
Censor, Y., Davidi, R., Herman, G.T.: Perturbation resilience and superiorization of iterative algorithms. Inverse Probl. 26 065008 (17 pp.) (2010)
Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in product space. Numer. Algorithms 8, 221–239 (1994)
Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Probl. 21, 2071–2084 (2005)
Censor, Y., Gibali, A., Reich, S.: Extensions of Korpelevich’s extragradient method for solving the variational inequality problem in Euclidean space. Optimization (2011, accepted for publication)
Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving the variational inequality problem in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)
Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Methods Softw. (2011, accepted for publication)
Censor, Y., Gibali, A., Reich, S., Sabach, S.: Common solutions to variational inequalities. Technical Report, 5 April 2011. Revised: July 18, 2011
Censor, Y., Segal, A.: The split common fixed point problem for directed operators. J. Convex Anal. 16, 587–600 (2009)
Censor, Y., Segal, A.: On the string averaging method for sparse common fixed point problems. Int. Trans. Oper. Res. 16, 481–494 (2009)
Censor, Y., Segal, A.: On string-averaging for sparse problems and on the split common fixed point problem. Contemp. Math. 513, 125–142 (2010)
Censor, Y., Zenios, S. A.: Parallel Optimization: Theory, Algorithms, and Applications. Oxford University Press, New York (1997)
Combettes, P.L.: Quasi-Fejérian analysis of some optimization algorithms. In: Butnariu, D., Censor, Y., Reich, S. (eds.) Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications, pp. 115–152. Elsevier, Amsterdam (2001)
Crombez, G.: A geometrical look at iterative methods for operators with fixed points. Numer. Funct. Anal. Optim. 26, 157–175 (2005)
Crombez, G.: A hierarchical presentation of operators with fixed points on Hilbert spaces. Numer. Funct. Anal. Optim. 27, 259–277 (2006)
Dang, Y., Gao, Y.: The strong convergence of a KM–CQ-like algorithm for a split feasibility problem. Inverse Probl. 27, 015007 (2011)
Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)
He, S., Yang, C., Duan, P.: Realization of the hybrid method for Mann iteration. Appl. Math. Comput. 217, 4239–4247 (2010)
Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekon. Mat. Metody 12, 747–756 (1976)
López, G., Martín-Márquez, V., Xu, H.K.: Iterative algorithms for the multiple-sets split feasibility problem. In: Censor, Y., Jiang, M., Wang, G. (eds.) Biomedical Mathematics: Promising Directions in Imaging, Therapy Planning and Inverse Problems, pp. 243–279. Medical Physics Publishing, Madison (2010)
Măruşter, Ş., Popirlan, C.: On the Mann-type iteration and the convex feasibility problem. J. Comput. Appl. Math. 212, 390–396 (2008)
Masad, E., Reich, S.: A note on the multiple-set split convex feasibility problem in Hilbert space. J. Nonlinear Convex Anal. 8, 367–371 (2007)
Moudafi, A.: The split common fixed-point problem for demicontractive mappings. Inverse Probl. 26, 1–6 (2010)
Nadezhkina, N., Takahashi, W.: Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 128, 191–201 (2006)
Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73, 591–597 (1967)
Pierra, G.: Decomposition through formalization in a product space. Math. Program. 28, 96–115 (1984)
Qu, B., Xiu, N.: A note on the CQ algorithm for the split feasibility problem. Inverse Probl. 21, 1655–1666 (2005)
Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75–88 (1970)
Schöpfer, F., Schuster, T., Louis, A.K.: An iterative regularization method for the solution of the split feasibility problem in Banach spaces. Inverse Probl. 24, 055008 (2008)
Segal, A.: Directed operators for common fixed point problems and convex programming problems. Ph.D. Thesis, University of Haifa (2008)
Takahashi, W., Toyoda, M.: Weak convergence theorems for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 118, 417–428 (2003)
Xu, H.K.: A variable Krasnosel’skii–Mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 22, 2021–2034 (2006)
Xu, H.K.: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Probl. 26, 105018 (2010)
Yamada, I., Ogura, N.: Adaptive projected subgradient method for asymptotic minimization of sequence of nonnegative convex functions. Numer. Funct. Anal. Optim. 25, 593–617 (2005)
Yang, Q.: The relaxed CQ algorithm solving the split feasibility problem. Inverse Probl. 20, 1261–1266 (2004)
Zaknoon, M.: Algorithmic developments for the convex feasibility problem. Ph.D. Thesis, University of Haifa (2003)
Zhang, W., Han, D., Li, Z.: A self-adaptive projection method for solving the multiple-sets split feasibility problem. Inverse Probl. 25, 115001 (2009)