Algorithms for single-machine scheduling with stochastic outtree precedence relations to minimize expected weighted flow time or maximum expected lateness

Unternehmensforschung - Tập 39 - Trang 321-348 - 1994
Matthias Bücker1, Klaus Neumann2, Thomas Rubach3
1Buggingen, Germany
2Institut für Wirtschaftstheorie und Operations Research, Universität Karlsruhe, Karlsruhe, Germany
3Germering, Germany

Tóm tắt

Stochastic single-machine scheduling problems with special tree-like GERT precedence constraints and expected weighted flow time or maximum expected lateness as objective functions are considered. To obtain polynomial algorithms for these problems, Smith's ratio rule and Lawler's rule for the deterministic problems 1¦outtree¦Σw v C v and 1¦prec¦f max , respectively, are generalized.

Tài liệu tham khảo

Bruno FL (1976) Scheduling algorithms for minimizing the mean weighted flow-time criterion. In Coffman EG Jr (ed) Computer and Job-Shop Scheduling Theory. John Wiley & Sons New York 101–137 Bücker M (1990) Ein-Maschinen-Scheduling-Probleme mit stochastischen Reihenfolgebeziehungen unter besonderer Berücksichtigung polynomialer Algorithmen. Doctoral Dissertation, University of Karlsruhe Bücker M (1992) Time complexity of single-machine scheduling with stochastic precedence constraints. Zeitschrift für Operations Research 36:211–226 Bücker M, Neumann K (1989) Stochastic single-machine scheduling to minimize the weighted expected flow-time and maximum expected lateness subject to precedence constraints given by an OR Network. Report WIOR-361, Institut für Wirtschaftstheorie und Operations Research, University of Karlsruhe Cinlar E (1975) Introduction to stochastic processes. Prentice-Hall, Englewood Cliffs Elmaghraby SE (1977) Activity networks: Project planning and control by network models. John Wiley & Sons New York Graham RL, Lawler EL, Lenstra JK, Rinnooy Kan AHG (1979) Optimization and approximation in deterministic sequencing and scheduling: A Survey. Annals of Discrete Mathematics 5:287–326 Horn WA (1972) Single-machine job sequencing with treelike precedence ordering and linear delay penalties. SIAM Journal of Applied Mathematics 23:189–202 Lawler EL (1973) Optimal sequencing of a single machine subject to precedence constraints. Management Science 19:544–546 Lawler EL (1976) Combinatorial optimization: Networks and matroids. Holt, Rinehart and Winston New York Lenstra JK, Rinnooy Kan AHG (1978) Complexity of scheduling under precedence constraints. Operations Research 26:22–35 Lenstra JK, Rinnooy Kan AHG, Brucker P (1977) Complexity of machine scheduling problems. Annals of Discrete Mathematics 1:343–362 Neumann K (1984) Recent developments in stochastic activity networks. Canadian Journal of Operational Research and Information Processing 22:219–248 Neumann K (1985) EOR project networks. Computing 34:1–15 Neumann K (1990) Stochastic project networks. Lecture Notes in Economics and Mathematical Systems Vol 344. Springer Berlin Neumann K, Steinhardt U (1979) GERT networks and the time-oriented evaluation of projects. Lecture Notes in Economics and Mathematical Systems Vol 172 Springer Berlin Nicolai W (1980) On the temporal analysis of special GERT networks using a modified Markov renewal process. Zeitschrift für Operations Research 24:263–272 Pritsker AAB (1977) Modeling and analysis usingQ-GERT networks. John Wiley & Sons New York Pritsker AAB, Sigal CE (1983) Management decision making — A network simulation approach. Prentice Hall, Englewood Cliffs Rubach T (1984) Stochastische Reihenfolgeplanung mit Hilfe von GERT-Netzplänen. Doctoral Dissertation. University of Karlsruhe Smith WE (1956) Various optimizers for single-stage production. Naval Research Logistics Quarterly 3:59–66