Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits
Tóm tắt
Từ khóa
Tài liệu tham khảo
M. A. Aizerman, “On a Problem Concerning Stability in “Large” of Dynamic Systems,” Usp. Mat. Nauk 4(4), 186–188 (1949).
A. M. Letov, Stability of Nonlinear Control Systems (GTTI, Moscow, 1955) [in Russian].
M. A. Aizerman and F. R. Gantmakher, Absolute Stability of Control Systems (Akad. Nauk SSSR, Moscow, 1963) [in Russian].
S. L. Lefschetz, Stability of Nonlinear Control Systems (Academic, New York, London, 1965).
A. F. Filippov, Differential Equations with Different Right Sides (Nauka, Moscow, 1985) [in Russian].
I. G. Malkin, “On Stability of Automatic Control Systems,” Prikl. Mat. Mekh. 16(4), 495–499 (1952).
N. P. Erugin, “On a Problem of the Stability Theory of Automatic Control Systems,” Prikl. Mat. Mekh. 16(5), 620–628 (1952).
N. N. Krasovskii, “Theorems on Stability of Motions Determined by a System of Two Equations,” Prikl. Mat. Mekh. 16(5), 547–554 (1952).
V. A. Pliss, Certain Problems of Motion Stability (Leningr. Gos. Univ., Leningrad, 1958) [in Russian].
V. A. Yakubovich, “On Boundedness and Stability in Large of Solutions of Certain Nonlinear Differential Equations,” Dokl. Akad. Nauk SSSR 121(6), 984–986 (1958).
A. R. Efendiev and M. A. Balitinov, “On Asymptotic Stability in Large of a Nonlinear System,” Differets. Uravneniya 4(4), 618 (1968).
G. A. Leonov, “On Stability in Large of Nonlinear Systems in the Critical Case of Two Nonzero Roots,” Prikl. Mat. Mekh. 45(4), 752–755 (1981).
R. E. Kalman, “Physical and Mathematical Mechanisms of Instability in Nonlinear Automatic Control Systems,” Transactions of ASME 79, 553–566 (1957).
G. A. Leonov, D. V. Ponomarenko, and V. B. Smirnova, Frequency Methods for Nonlinear Analysis. Theory and Applications (World Sci., Singapore, 1996).
L. Markus and H. Yamabe, “Global Stability Criteria for Differential Systems,” Osaka Math. J 12, 305–317 (1960).
A. A. Glutsyuk, “Asymptotic Stability of Linearization of a Vector Field in the Plane Having Singular Points Implies Global Stability,” Funktsional’nyi Analiz i Ego Prilozhenie 29(4), 17–30 (1995).
R. Fessler A Proof of the Two-dimensional Markus-Yamabe Stability Conjecture and a Generalization, Annedes. Polonici. Mathematici 62, 45–47 (1995).
C. Gutierrez, “A Solution to the Bidimensional Global Asymptotic Stability Conjecture,” Ann. Inst. H. Poincare Anal. Non Lineaire 12, 627–671 (1995).
G. A. Leonov, “On the Necessity of a Frequency Condition of Absolute Stability of Stationary Systems in the Critical Case of a Pair of Purely Imaginaty Roots,” Dokl. Akad. Nauk SSSR 193(4), 756–759 (1970).
E. Noldus, “A Counterpart of Popov’s Theorem for the Existence of Periodic Solutions,” Int. J. Control 13, 705–719 (1971).
N. M. Krylov and N. N. Bogolyubov, New Methods of Nonlinear Mechanics (Gostekhteorizdat, Moscow, 1934) [in Russian].
N. M. Krylov and N. N. Bogolyubov, Introduction to Nonlinear Mechanics (AN USSR, Kiev, 1937) [in Russian].
M. A. Aizerman, Lecture on Automatic Control Theory (Fizmatgiz, Moscow, 1958) [in Russian].
E. P. Popov, Computation of Nonlinear Automatic Systems Based on Harmonic Linearization (Sudpromgiz, Moscow, 1959) [in Russian].
E. P. Popov and I. P. Pal’tov, Approximative Methods of Investigation of Nonlinear Automatic Systems (Fizmatgiz, Moscow, 1960) [in Russian].
E. N. Rozenvasser, Oscillations of Nonlinear Systems (Nauka, Moscow, 1969) [in Russian].
J. C. Hsu and A. U. Meyer, Modern Control Principles and Applications (McGraw-Hill, New York, 1968; Mashinostroenie, Moscow, 1972).
E. P. Popov, The Theory of Nonlinear Automatic Regulation and Control Systems (Nauka, Moscow, 1979).
V. A. Besekerskii and E. P. Popov, Automatic Control Systems Theory (Nauka, Moscow, 1975) [in Russian].
A. A. Pervozvanskii, Course of Automatic Control Theory (Nauka, Moscow, 1986) [in Russian].
H. K. Khalil, Nonlinear Systems (Prentice Hall, New Jersey, 2002).
Ya. Z. Tsypkin, Theory of Relay Automatic Control Systems (Gostekhizdat, Moscow, 1955) [in Russian].
B. V. Bulgakov, “Auto-Oscillations of Control Systems,” Prikl. Mat. Mekh. 7(2), 97–108 (1943).
B. V. Bulgakov, Oscillations (Gostekhizdat, Moscow, 1954) [in Russian].
M. A. Aizerman, “Physical Foundations of Application of Small parameter Methods to Solving Nonlinear Problems of Automatic Control Theory,” Avtom. Telemekh. 14(5), 597–603 (1953).
E. D. Garber and E. N. Rozenvasser, “On Investigation of Periodic Modes of Nonlinear Systems Based on Filter Hypothesis,” Avtom. Telemekh. 26(2), 277–287 (1965).
A. R. Bergen and R. L. Franks, “Justification of the Describing Function Method,” SIAM J. Control 9(4), 568–589 (1971).
A. I. Mees and A. R. Bergen, “Describing Functions Revisited,” IEEE Trans. Autom. Control AC-20(4), 473–478 (1975).
B. Van der Pol, “Forced Oscillations in a Circuit with Nonlinear Resistance (Receptance with Reactive Triode),” Edinburgh and Dublin Philosophical Magazine, 3, 65–80 (1927).
A. A. Andronov, A. A. Vitt, and S. E. Khaikin, Theory of Oscillations (Nauka, Moscow, 1937) [in Russian].
J. J. Stoker, Nonlinear Vibrations in Mechanical and Electric Systems (Wiley, New York, 1995; Inostrannaya Literatura, Moscow, 1952) [in Russian].
K. F. Teodorchik, Auto-Oscillation Systems, 3rd Ed. (GITTL, Moscow, 1952) [in Russian].
G. S. Gorelik, Oscillations and Waves, 2nd Ed. (Fizmatlit, Moscow, 1959) [in Russian].
G. A. Leonov, “On Harmonic Linearization Method,” DAN. Mekhanika 424(4), 462–464 (2009).
G. A. Leonov, “On Harmonic Linearization Method,” Avtom. Telemekh. 5, 65–75 (2009).
G. A. Leonov, “On Aizerman’s Problem,” Avtom. Telemekh. 7, 37–49 (2009).
G. A. Leonov, “Efficient Methods of searching Periodic Oscillations in Dynamic Systems,” Prikl. Mat. Mekh. 74(1), 37–73 (2010).
G. A. Leonov, Control Theory (S.-Peterb. Gos. Univ., St. Petersburg, 2006) [in Russian].
A. N. Kolmogorov and S. V. Fomin, Elements of Function Theory and Functional Analysis (FIZMATLIT, Moscow, 2004) [in Russian].
G. A. Leonov, V. I. Vagaitsev, and N. V. Kuznetsov, “An Algorithm of Localization of Chua Attractors Based on the Harmonic Linearization Method,” DAN. Matematika 433(3), 323–326 (2010).
V. I. Vagaitsev, N. V. Kuznetsov, and G. A. Leonov, “Localization of Attractors of the Chua Generalized System Based on the Harmonic Linearization Method,” Vestnik Sankt-Peterburgskogo Universiteta 1(4), 62–76 (2010).
V. O. Bragin, N. V. Kuznetsov, and G. A. Leonov, “Algorithm for Counterexamples Construction for Aizerman’s and Kalman’s Conjectures,” Proceedings of 4th IFAC Worlshop on Periodic Control System, 2010.
G. A. Leonov, V. O. Bragin, and N. V. Kuznetsov, “an Algorithm for Constructing Counterexamples to Kalman’s Problem,” DAN. Matematika 433(2), 163–166 (2010).
V. Blondel and A. Megretski, Unsolved Problems in Mathematical Systems and Control Theory (Princeton University Press, Princeton, 2004).
J. C. Hsu and A. U. Meyer, Modern Control Principles and Applications (McGraw-Hill, 1968).
R. E. Fitts, “Two Counterexamples to Aizerman’s Conjecture,” Trans. IEEE AC-11(3), 553–556 (1966).
N. E. Barabanov, “Mathematical Life in the USSR. In Leningrad Mathematical Society,” Usp. Mat. Nauk 37(1), 163–167 (1982).
N. E. Barabanov, “On Kalman’s Problem,” Sib. Mat. Zh. 29(3), 3–11 (1988).
J. Bernat and J. Llibre, “Counterexample to Kalman and Markus-Yamabe Conjectures in Dimension Larger Than 3,” Dynam. Contin. Discrete Impuls. Systems 2(3), 337–379 (1996).
A. A. Andronov and A. G. Maier, “On the Vyshnegradkii Problem in the Theory of Direct Control,” Avtom. Telemekh. 8(5) (1947).
A. Kh. Gelig, G. A. Leonov, and V. A. Yakubovich, Stability of Nonlinear Systems with a Nonunique Equilibrium State (Nauka, Moscow, 1987) [in Russian].
G. Meisters, A Biography of the Markus-Yamabe Conjecture, 1996, http://www.math.unl.edu/gmeisters1/papers/HK1996.pdf .
A. A. Glutsyuk, “Markus-Yamabe Problem in Global Stability: Two-Dimensional Proof and Tree-Dimensional Counterexample,” Usp. Mat. Nauk 53(2), 169–172 (1998).
R. Genesio, A. Tesi, and F. Villoresi, “A Frequency Approach for Analyzing and Controlling Chaos in Nonlinear Circuits,” IEEE Trans. on Circuits and Systems I-fundamental Theory and Applications 40(11), C. 819–828 (1993).
M. Basso, L. Giovanardi, R. Genesio, et al., “An Approach for Stabilizing Periodic Orbits in Nonlinear Systems,” in Proceedings of European Control Conference, Karlsruhe, Germany, 1999.
L. O. Chua and G. N. Lin, “Canonical Realization of Chua’s Circuit Family,” IEEE Trans. on Circuits and Systems 37(4), 885–902 (1990).
L. O. Chua, “The Genesis of Chua’s Circuit,” Archiv fur Elektronik und Ubertragungstechnik 46, 250–257 (1992).
L. O. Chua, “A Zoo of Strange Attractors from the Canonical Chua’s Circuits,” in Proceedings of the 35th IEEE Midwest Symposium on Circuits and Systems, (Cat. No.92CH3099-9), Washington, USA, 1992, Vol. 2, pp. 916–926.
L. O. Chua, “Global Unfolding of Chua’s Circuit,” IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences E76-A, 704–734 (1993).
L. O. Chua, “A Glimpse of Nonlinear Phenomena from Chua’s Oscillator,” Philosophical Transactions: Physical Sciences and Engineering 353, 3–12 (1701).
L. O. Chua, L. Pivka, and C. W. Wu, “A Universal Circuit for Studying Chaotic Phenomena,” Philosophical Transactions: Physical Sciences and Engineering 353(1701), 65–84 (1995).
E. Bilotta and P. Pantano, “A Gallery of Chua Attractors,” World Scientific Series on Nonlinear Science, Series A 61 (2008).
G. A. Leonov and N. V. Kuznetsov, “Time-Varying Linearization and the Perron Effects,” Int. Journal of Bifurcation and Chaos 17(4), 1079–1107 (2007).
G. Q. Zhong and F. Ayrom, “Periodicity and Chaos in Chua’s Circuit,” IEEE Trans. on Circuits and Systems CAS-32(5), 501–503 (1985).
J. A. K. Suykens and J. Vandewalle, “Generation of n-Double Scrolls (n = 1, 2, 3, 4, …),” IEEE Trans. on Circuits and Systems,” I: Fundamental Theories and Applications 40(11), 861–867 (1993).
J. A. K. Suykens, A. Huang, and L. O. Chua, “A Family of N-Scroll Attractors from a Generalized Chua’s Circuit,” AEU-Int. J. Electronics & Communications 51(3), 131–138 (1997).
M. E. Yalcin, J. A. K. Suykens, and J. Vandewalle, “On the Realization of N-Scroll Attractors,” in Proceedings of IEEE International Symposium on Circuits and Systems, Orlando, USA, 1999, Vol. 5, pp. 483–486.
M. E. Yalcin, J. A. K. Suykens, and J. Vandewalle, “Experimental Confirmation of 3- and 5-Scroll Attractors from a Generalized Chua’s Circuit,” IEEE Trans. on Circuits and Systems,” Part I: Fundamental Theory and Applications 47(3), 425–429 (2000).
J. A. K. Suykens, M. E. Yalcin, and J. Vandewalle, “A Generic Class of Chaotic and Hyperchaotic Circuits with Synchronization Methods,” Chaos in Circuits and Systems (2002).
K. S. Tang, K. F. Man, G. Q. Zhong, et al., “Some New Circuit Design for Chaos Generation,” Chaos in Circuits and Systems, Ser. B 11, 151–170 (2002).
K. S. Tang, G. Q. Zhong, K. F. Man, and G. Chen, “A Systematic Approach to Generating N-Scroll Attractors,” Intern. J. Bifurcation and Chaos 12(12), 2907–2915 (2002).
F. A. Savaci and S. Gunel, “Harmonic Balance Analysis of the Generalized Chua’s Circuit,” Int. J. Bifurcation and Chaos 16(8), 2325–2332 (2006).
N. V. Kuznetsov, G. A. Leonov, and V. I. Vagaitsev, “Analytical-Numerical Method for Localization of Attractors of Generalization Chua System,” in Proceedings of 4th IFAC Workshop on Periodic Control Systems, Antalia, Turkey, 2010.
G. A. Leonov, N. V. Kuznetsov, V. I. Vagaitsev, “Localization of Hidden Chua’s attractors,” Physics Letters A. 2011 (doi:10.1016/j.physleta.2011.04.037).