Algorithms for computing Best Coverage Path in the presence of obstacles in a sensor field

Journal of Discrete Algorithms - Tập 13 - Trang 86-97 - 2012
Senjuti Basu Roy1, Gautam Das2, Sajal K. Das2
1Institute of Technology, University of Washington Tacoma, Tacoma, WA 98402, United States
2Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX 76019, United States

Tài liệu tham khảo

Aurenhammer, 1991, On the peeperʼs Voronoi diagram, SIGACT News, 22, 50, 10.1145/126546.126548 S. Basu Roy, G. Das, S.K. Das, Computing best coverage path in the presence of obstacles in a sensor field, in: WADS, 2007, pp. 577–588. Berg, 1997 L.P. Chew, Constrained Delaunay triangulations, in: Proceedings of the Third Annual Symposium on Computational Geometry, 1987, pp. 215–222. Cormen, 1990 G. Das, The visibility graph contains a bounded-degree spanner, in: Proc. 9th Canad. Conf. Computational Geometry, 1997. G. Das, Approximation schemes in computational geometry, PhD Thesis, Univ. of Wisconsin-Madison, 1990. Ghosh, 1991, An output sensitive algorithm for computing visibility graphs, SIAM J. Comput., 20, 888, 10.1137/0220055 K. Klarkson, Approximation algorithms for shortest path motion planning, in: Proc. of the Nineteenth Annual ACM Conf. on Theory of Computing, 1987, pp. 56–65. Li, 2003, Coverage problems in wireless ad-hoc sensor networks, IEEE Trans. Comput., 52, 753, 10.1109/TC.2003.1204831 Lingas, 1989, Voronoi diagrams with barriers and their applications, Inform. Process. Lett., 32, 191, 10.1016/0020-0190(89)90043-4 Megerian, 2005, Worst and best-case coverage in sensor networks, IEEE Trans. Mobile Comput., 4, 84, 10.1109/TMC.2005.15 S. Meguerdichian, F. Koushanfar, G. Qu, M. Potkonjak, Exposure in wireless ad hoc sensor networks, in: Proc. of the 7th Annual International Conference on Mobile Computing and Networking (MobiCom ʼ01), July 2001, pp. 139–150. C.S. Meguerdichian, F. Koushanfar, M. Potkonjak, M. Srivastava, Coverage problems in wireless ad-hoc sensor networks, in: Infocom, April 2001. ORourke, 1987 Sack, 2000, Art gallery and illumination problems, 973 R. Seidel, Constrained Delaunay triangulations and Voronoi diagrams with obstacles, Rep. 260, IIG-TU Graz, Austria, 1988, pp. 178–191. C.A. Wang, A new generalization of Voronoi diagrams in the plane, PhD thesis, Univ. of Alberta, Canada, 1987. Wang, 1998, Finding constrained and weighted Voronoi diagrams in the plane, Comput. Geom., 10, 89, 10.1016/S0925-7721(97)00028-X