Algorithms for Stellar Perturbation Computations on Oort Cloud Comets
Tóm tắt
We investigate different approximate methods of computing the perturbations on the orbits of Oort cloud comets caused by passing stars, by checking them against an accurate numerical integration using Everhart’s RA15 code. The scenario under study is the one relevant for long-term simulations of the cloud’s response to a predefined set of stellar passages. Our sample of stellar encounters simulates those experienced by the Solar System currently, but extrapolated over a time of 1010 years. We measure the errors of perihelion distance perturbations for high-eccentricity orbits introduced by several estimators – including the classical impulse approximation and Dybczyński’s (1994, Celest. Mech. Dynam. Astron. 58, 1330–1338) method – and we study how they depend on the encounter parameters (approach distance and relative velocity). We introduce a sequential variant of Dybczyński’s approach, cutting the encounter into several steps whereby the heliocentric motion of the comet is taken into account. For the scenario at hand this is found to offer an efficient means to obtain accurate results for practically any domain of the parameter space.
Tài liệu tham khảo
Bahcall J. N. (1984). Astrophys. J. 276:169–181
Bailey M. E. (1986). MNRAS 218:1–30
Danby J. M. A. (1987). Celest. Mech. 40:303–312
Duncan M., Quinn T., Tremaine S. (1987). Astron. J. 94:1330–1338
Dybczyński P. A. (1994). Celest. Mech. Dynam. Astron. 58:139–150
Dybczyński P. A. (2002). A&A 396:283–292
Eggers S., Woolfson M. M. (1996). MNRAS 282:13–18
Everhart, E.: 1985, in A. Carusi and G. B. Valsecchi (eds.), An efficient integrator that uses Gauss-Radau spacing. Dynamics of comets: Their Origin and Evolution, IAU Coll. 83, Reidel, Dordrecht, pp. 185–202.
Fernández J. A. (1980). Icarus 42:406–421
Fernández J. A. (1982). Astron. J. 87:1318–1332
Garcí a-Sánchez J., Weissman P. R., Preston R. A., Jones D. L., Lestrade J.-F., Latham D. W., Stefanik R. P., Paredes J. M. (2001). A&A, 379:634–659
Heisler J. (1990). Icarus 88:104–121
Heisler J., Tremaine S., Alcock C. (1986). Icarus 70:269–288
Hills J. G. (1981). Astron. J. 86:1730–1740
House F., Weiss G., Wiegandt R. (1978). Celest. Mech. 18:311–318
Levison H., Dones L., Duncan M. J. (2001). Astron. J. 121:2253–2267
Matese J. J., Lissauer J. J. (2002). Icarus 157:228–240
Mazeeva O. A. and Emel’yanenko V. V.: 2002, Variations of the Oort cloud comet flux in the planetary region. Asteroids Comets Meteors: ACM 2002, 445–448.
Morris D. E., O’Neill T. G. (1988). Astron. J. 96:1127–1135
Napier W. M., Staniucha M. (1982). MNRAS 198:723–735
Oort J. H. (1950). Bull. Astron. Inst. Neth. 11:91–110
Öpik E. J. (1932). Proc. Am. Acad. Arts Sci. 67:169–182
Rémy F., Mignard F. (1985). Icarus 63:1–30
Rickman H. (1976). Bull. Astron. Inst. Czech. 27:92–105
Rickman H., Froeschlé Cl., Froeschlé Ch., Valsecchi G. B. (2004). A&A 428:673–681
Scholl H., Cazenave A., Brahic A. (1982). A&A 112:157–166
Serafin R. A. (2002). Celest. Mech. Dynam. Astron. 82:363–373
Weissman, P. R.: 1979, in R. L. Duncombe (ed.), Physical and dynamical evolution of long-period comets. Dynamics of the Solar System, IAU Symp. 81, Reidel, Dordrecht, pp. 277–282.
Weissman P. R. (1980). Nature 288:242–243
Yabushita S., Hasegawa I., Kobayashi K. (1982). MNRAS 200:661–671