Algorithms for Stellar Perturbation Computations on Oort Cloud Comets

The moon - Tập 97 - Trang 411-434 - 2006
Hans Rickman1, Marc Fouchard2,3, Giovanni B. Valsecchi2, Christiane Froeschlé4
1Uppsala Astronomical Observatory, Uppsala, Sweden
2INAF–IASF, Roma, Italy
3IMCCE/SYRTE, Observatoire de Paris, Paris, France
4Observatoire de la Côte d’Azur, Nice, France

Tóm tắt

We investigate different approximate methods of computing the perturbations on the orbits of Oort cloud comets caused by passing stars, by checking them against an accurate numerical integration using Everhart’s RA15 code. The scenario under study is the one relevant for long-term simulations of the cloud’s response to a predefined set of stellar passages. Our sample of stellar encounters simulates those experienced by the Solar System currently, but extrapolated over a time of 1010 years. We measure the errors of perihelion distance perturbations for high-eccentricity orbits introduced by several estimators – including the classical impulse approximation and Dybczyński’s (1994, Celest. Mech. Dynam. Astron. 58, 1330–1338) method – and we study how they depend on the encounter parameters (approach distance and relative velocity). We introduce a sequential variant of Dybczyński’s approach, cutting the encounter into several steps whereby the heliocentric motion of the comet is taken into account. For the scenario at hand this is found to offer an efficient means to obtain accurate results for practically any domain of the parameter space.

Tài liệu tham khảo

Bahcall J. N. (1984). Astrophys. J. 276:169–181 Bailey M. E. (1986). MNRAS 218:1–30 Danby J. M. A. (1987). Celest. Mech. 40:303–312 Duncan M., Quinn T., Tremaine S. (1987). Astron. J. 94:1330–1338 Dybczyński P. A. (1994). Celest. Mech. Dynam. Astron. 58:139–150 Dybczyński P. A. (2002). A&A 396:283–292 Eggers S., Woolfson M. M. (1996). MNRAS 282:13–18 Everhart, E.: 1985, in A. Carusi and G. B. Valsecchi (eds.), An efficient integrator that uses Gauss-Radau spacing. Dynamics of comets: Their Origin and Evolution, IAU Coll. 83, Reidel, Dordrecht, pp. 185–202. Fernández J. A. (1980). Icarus 42:406–421 Fernández J. A. (1982). Astron. J. 87:1318–1332 Garcí a-Sánchez J., Weissman P. R., Preston R. A., Jones D. L., Lestrade J.-F., Latham D. W., Stefanik R. P., Paredes J. M. (2001). A&A, 379:634–659 Heisler J. (1990). Icarus 88:104–121 Heisler J., Tremaine S., Alcock C. (1986). Icarus 70:269–288 Hills J. G. (1981). Astron. J. 86:1730–1740 House F., Weiss G., Wiegandt R. (1978). Celest. Mech. 18:311–318 Levison H., Dones L., Duncan M. J. (2001). Astron. J. 121:2253–2267 Matese J. J., Lissauer J. J. (2002). Icarus 157:228–240 Mazeeva O. A. and Emel’yanenko V. V.: 2002, Variations of the Oort cloud comet flux in the planetary region. Asteroids Comets Meteors: ACM 2002, 445–448. Morris D. E., O’Neill T. G. (1988). Astron. J. 96:1127–1135 Napier W. M., Staniucha M. (1982). MNRAS 198:723–735 Oort J. H. (1950). Bull. Astron. Inst. Neth. 11:91–110 Öpik E. J. (1932). Proc. Am. Acad. Arts Sci. 67:169–182 Rémy F., Mignard F. (1985). Icarus 63:1–30 Rickman H. (1976). Bull. Astron. Inst. Czech. 27:92–105 Rickman H., Froeschlé Cl., Froeschlé Ch., Valsecchi G. B. (2004). A&A 428:673–681 Scholl H., Cazenave A., Brahic A. (1982). A&A 112:157–166 Serafin R. A. (2002). Celest. Mech. Dynam. Astron. 82:363–373 Weissman, P. R.: 1979, in R. L. Duncombe (ed.), Physical and dynamical evolution of long-period comets. Dynamics of the Solar System, IAU Symp. 81, Reidel, Dordrecht, pp. 277–282. Weissman P. R. (1980). Nature 288:242–243 Yabushita S., Hasegawa I., Kobayashi K. (1982). MNRAS 200:661–671