Algorithmically complex residually finite groups

Bulletin of Mathematical Sciences - Tập 7 Số 2 - Trang 309-352 - 2017
Olga Kharlampovich1, Alexei Myasnikov2, Mark Sapir3
1Department of Mathematics and Statistics, Hunter College, City University of New York, New York, NY, 10065, USA
2Stevens Institute of Technology, Hoboken, NJ, 07030 USA
3Department of Mathematics, Vanderbilt University, Nashville, TN 37240, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agol, I.: The virtual Hacken conjecture (with an appendix by I. Agol, D. Groves and J. Manning), arXiv:1204.2810 , (2012)

Baumslag, G.: A non-cyclic one-relator group all of whose finite factor groups are cyclic. J. Aust. Math. Soc. 10, 497–498 (1969)

Baumslag, G.: Subgroups of finitely presented metabelian groups. J. Aust. Math. Soc. Ser. A 16(1), 98–110 (1973)

Baumslag, G., Miller III, C.F., Short, H.: Isoperimetric inequalities and the homology of groups. Invent. Math. 113(3), 531–560 (1993)

Baumslag, G., Roseblade, J.E.: Subgroups of direct products of free groups. J. Lond. Math. Soc. 30, 44–52 (1984)

Borisov, A., Sapir, M.: Polynomial maps over finite fields and residual finiteness of mapping tori of group endomorphisms. Invent. Math. 160(2), 341–356 (2005)

Borisov, A., Sapir, M.: Polynomial maps over p-adics and residual properties of mapping tori of group endomorphisms. Int. Math. Res. Not. IMRN 16, 3002–3015 (2009)

Birget, J.-C.: Infinite string rewriting systems and complexity. J. Symb. Comput. 25(6), 759–793 (1998)

Bou-Rabee, K.: Quantifying residual finiteness. J. Algebra 323, 729–737 (2010)

Brady, N., Dison, W., Riley, T.: Hyperbolic hydra. Groups Geom. Dyn. 7(4), 961–976 (2013)

Bridson, M., Haefliger, A.: Metric Spaces of Non-Positive Curvature. Springer, Berlin (1999)

Cohen, D.E.: Combinatorial Group Theory: A Topological Approach. London Mathematical Society Student Texts, 14. Cambridge University Press, Cambridge (1989)

Davis, M.D.: A note on universal Turing machines. Automata studies, Annals of Mathematics Studies, no. 34, pp. 167–175. Princeton University Press, Princeton (1956)

Dison, W., Riley, T.: Hydra groups. Comment. Math. Helv. 88(3), 507–540 (2013)

Dyson, V.H.: A family of groups with nice word problems. Collection of articles dedicated to the memory of Hanna Neumann, VIII. J. Aust. Math. Soc. 17, 414–425 (1974)

Ershov, M.: Golod–Shafarevich groups: a survey. Int. J. Algebra Comput. 22(5), 1230001 (2012)

Farb, B.: The extrinsic geometry of subgroups and the generalized word problem. Proc. Lond. Math. Soc. 68(3), 577–593 (1994)

Gersten, S.M.: Dehn functions and l1-norms of finite presentations. Algorithms and Classification in Combinatorial Group Theory, pp. 195–225. Springer, Berlin (1992)

Gersten, S.M.: Isoperimetric and isodiametric functions of finite presentations. Geometric Group Theory, vol. 1 (Sussex, 1991), pp. 79–96, London Math. Soc. Lecture Note Ser., 181, Cambridge University Press, Cambridge (1993)

Gersten, S.M., Riley, T.R.: Some duality conjectures for finite graphs and their group theoretic consequences. Proc. Edinb. Math. Soc. 48(2), 389–421 (2005)

Grigorchuk, R.: Groups with intermediate growth functions and their applications, Doctor’s Thesis (Russian), Moscow Steklov Mathematical Institute (1985)

Golubov, E.A.: Finite separability in semigroups. Dokl. Akad. Nauk SSSR 189, 20–22 (1969)

Gurevich, Y.S.: The problem of equality of words for certain classes of semigroups. Algebra i Log. Sem. 5(5), 25–35 (1966)

Higman, G.: Subgroups of finitely presented groups. Proc. R. Soc. Ser. A 262, 455–475 (1961)

Hsu, T., Wise, D.: Cubulating graphs of free groups with cyclic edge groups. Amer. J. Math. 132(5), 1153–1188 (2010)

Kassabov, M., Matucci, F.: Bounding the residual finiteness of free groups. Preprint, arXiv

Kassabov, M., Nikolov, N.: Generation of polycyclic groups. J. Group Theory 12(4), 567–577 (2009)

Kharlampovich, O.G.: Finitely presented solvable group with unsolvable word problem. Sov. Math. Izvest. 45(4), 852–873 (1981)

Kharlampovich, O.G.: The word problem for groups and Lie algebras, Doctor’s Thesis (Russian), Moscow Steklov Mathematical Institute (1990)

Kharlampovich, O.G.: The universal theory of the class of finite nilpotent groups is undecidable. Mat. Zametki 33(4), 499–516 (1983)

Kharlampovich, O.G., Sapir, M.V.: A non-residually finite, relatively finitely presented group in the variety $$\mathfrak{N}_2\mathfrak{A}$$ N 2 A . Combinatorial and Geometric Group Theory (Edinburgh, 1993), pp. 184–189, London Math. Soc. Lecture Note Ser., 204, Cambridge Universiy Press, Cambridge (1995)

Kharlampovich, O., Sapir, M.: Algorithmic problem in varieties. Int. J. Algebra Comput. 5(4–5), 379–602 (1995)

Kourovskaja tetrad’ (Unsolved Problems in Group Theory), 5th edn. Novosibirsk, (1976)

Lipton, R.J., Zalcstein, Y.: Word problems solvable in logspace. J. Assoc. Comput. Mach. 24, 522–526 (1977)

Malcev, A.I.: Algorithms and Recursive Functions. Nauka, Moscow (1965)

Malcev, A.I.: On Homomorphisms onto finite groups (Russian). Uchen. Zap. Ivanovskogo Gos. Ped. Inst. 18 (1958), pp. 49–60. English translation in: Amer. Math. Soc. Transl. Ser. 2, 119, pp. 67–79 (1983)

McKenzie, R., Thompson, R.J.: An elementary construction of unsolvable word problems in group theory. Word problems: decision problems and the Burnside problem in group theory (Conf., Univ. California, Irvine, Calif. 1969; dedicated to Hanna Neumann), Studies in Logic and the Foundations of Math., 71, p. 457478. Amsterdam (1973)

Meskin, S.: A finitely generated residually finite group with an unsolvable word problem. Proc. Am. Math. Soc. 43(1), 8–10 (1974)

Madlener, K., Otto, F.: Pseudonatural algorithms for the word problem for finitely presented monoids and groups. J. Symb. Comput. 1(4), 383–418 (1985)

McKinsey, J.: The decision problem for some classes of sentences without quantifiers. J. Symb. Log. 8, 61–76 (1973)

Miasnikov, A., Ushakov, A., Won, D.: The word problem in Baumslag group is polynomial time decidable. J. Algebra 345, 324–342 (2011)

Mikhailova, K.A.: The occurrence problem for direct products of groups. Dokl. Akad. Nauk SSSR 119, 1103–1105 (1958)

Neumann, H.: Varieties of Groups. Springer, Berlin (1967)

Nikolov, N., Segal, D.: Finite index subgroups in pro-finite groups. C. R. Math. Acad. Sci. Paris 337(5), 303–308 (2003)

Ollivier, Y., Wise, D.T.: Cubulating random groups at density less than 1/6. Trans. Am. Math. Soc. 363(9), 4701–4733 (2011)

Olshanskii, AYu.: Almost every group is hyperbolic. Int. J. Algebra Comput. 2(1), 1–17 (1992)

Olshanskii, A., Sapir, M.: Length and area functions on groups and quasi-isometric Higman embeddings. Int. J. Algebra Comput. 11, 137–170 (2001)

Papadimitriou, C.H.: Computational Complexity. Addison-Wesley Publishing Company, Reading (1994)

Pueschel, K.: Hydra group doubles are not residually finite, arXiv:1507.02554

Platonov, A.N.: An isoperametric function of the Baumslag–Gersten group. Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2004, no. 3, pp. 12–17, translation in Moscow Univ. Math. Bull. 59 (2004), no. 3, p. 1217 (2005)

Remeslennikov, V.: Studies on infinite solvable and finitely approximable groups. Mat. Zametki 17(5), 819–824 (1975)

Remak, R.: Uber der Zerlegung der endlichen Gruppen in direkte unzerlegbare Faktoren. J. Reine Angew. Math. 139, 293308 (1911)

Rips, E.: Subgroups of small cancellation groups. Bull. Lond. Math. Soc. 14, 45–47 (1982)

Rotman, J.J.: An Introduction to the Theory of Groups, 4th edn. Graduate Texts in Mathematics, 148. Springer, New York (1995)

Sapir, M.: Algorithmic problems in varieties of semigroups. Algebra i Logika 27(4), 440–463 (1988)

Sapir, M.: Weak word problem for finite semigroups. Monoids and Semigroups with Applications (Berkeley, CA, 1989), pp. 206–219. World Science Publisher, River Edge (1991)

Sapir, M.: Asymptotic invariants, complexity of groups and related problems. Bull. Math. Sci. 1(2), 277–364 (2011)

Sapir, M.: Minsky machines and algorithmic problems, accepted in Essays Dedicated to Yuri Gurevich on the Occasion of His 75th Birthday, LNCS. Springer, Berlin (2015)

Sapir, M., Birget, J.C., Rips, E.: Isoperimetric and isodiametric functions of groups. Ann. Math. 156(2), 345–466 (2002)

Slobodskoi, A.M.: Undecidability of the universal theory of finite groups. Algebra Log. 20(2), 207–230 (1981)

Waack, St: On the parallel complexity of linear groups. RAIRO Inform. Theor. Appl. 25, 323–354 (1991)

Wehrfritz, B.A.F.: On finitely generated soluble linear groups. Math. Z. 170(2), 155–167 (1980)

Wise, D.T.: The structure of groups with a quasiconvex hierarhy. Preprint (2011)

Wise, D.T.: A residually finite version of Rips’s construction. Bull. Lond. Math. Soc. 35(1), 23–29 (2003)

Zel’manov, E.I.: The solution of the restricted Burnside problem for groups of odd exponent. Izv. Akad. Nauk. SSSR. Ser. Mat., 54(1), 42–59 (1990). Transl. in Math. USSR-Izv. 36(1), 41–60 (1991)

Zel’manov, E.I.: The solution of the restricted Burnside problem for 2-groups. Mat. Sb. 182(4), 568–592 (1991)