Algorithmically complex residually finite groups
Tóm tắt
Từ khóa
Tài liệu tham khảo
Agol, I.: The virtual Hacken conjecture (with an appendix by I. Agol, D. Groves and J. Manning), arXiv:1204.2810 , (2012)
Baumslag, G.: A non-cyclic one-relator group all of whose finite factor groups are cyclic. J. Aust. Math. Soc. 10, 497–498 (1969)
Baumslag, G.: Subgroups of finitely presented metabelian groups. J. Aust. Math. Soc. Ser. A 16(1), 98–110 (1973)
Baumslag, G., Miller III, C.F., Short, H.: Isoperimetric inequalities and the homology of groups. Invent. Math. 113(3), 531–560 (1993)
Baumslag, G., Roseblade, J.E.: Subgroups of direct products of free groups. J. Lond. Math. Soc. 30, 44–52 (1984)
Borisov, A., Sapir, M.: Polynomial maps over finite fields and residual finiteness of mapping tori of group endomorphisms. Invent. Math. 160(2), 341–356 (2005)
Borisov, A., Sapir, M.: Polynomial maps over p-adics and residual properties of mapping tori of group endomorphisms. Int. Math. Res. Not. IMRN 16, 3002–3015 (2009)
Birget, J.-C.: Infinite string rewriting systems and complexity. J. Symb. Comput. 25(6), 759–793 (1998)
Cohen, D.E.: Combinatorial Group Theory: A Topological Approach. London Mathematical Society Student Texts, 14. Cambridge University Press, Cambridge (1989)
Davis, M.D.: A note on universal Turing machines. Automata studies, Annals of Mathematics Studies, no. 34, pp. 167–175. Princeton University Press, Princeton (1956)
Dyson, V.H.: A family of groups with nice word problems. Collection of articles dedicated to the memory of Hanna Neumann, VIII. J. Aust. Math. Soc. 17, 414–425 (1974)
Farb, B.: The extrinsic geometry of subgroups and the generalized word problem. Proc. Lond. Math. Soc. 68(3), 577–593 (1994)
Gersten, S.M.: Dehn functions and l1-norms of finite presentations. Algorithms and Classification in Combinatorial Group Theory, pp. 195–225. Springer, Berlin (1992)
Gersten, S.M.: Isoperimetric and isodiametric functions of finite presentations. Geometric Group Theory, vol. 1 (Sussex, 1991), pp. 79–96, London Math. Soc. Lecture Note Ser., 181, Cambridge University Press, Cambridge (1993)
Gersten, S.M., Riley, T.R.: Some duality conjectures for finite graphs and their group theoretic consequences. Proc. Edinb. Math. Soc. 48(2), 389–421 (2005)
Grigorchuk, R.: Groups with intermediate growth functions and their applications, Doctor’s Thesis (Russian), Moscow Steklov Mathematical Institute (1985)
Golubov, E.A.: Finite separability in semigroups. Dokl. Akad. Nauk SSSR 189, 20–22 (1969)
Gurevich, Y.S.: The problem of equality of words for certain classes of semigroups. Algebra i Log. Sem. 5(5), 25–35 (1966)
Hsu, T., Wise, D.: Cubulating graphs of free groups with cyclic edge groups. Amer. J. Math. 132(5), 1153–1188 (2010)
Kassabov, M., Matucci, F.: Bounding the residual finiteness of free groups. Preprint, arXiv
Kharlampovich, O.G.: Finitely presented solvable group with unsolvable word problem. Sov. Math. Izvest. 45(4), 852–873 (1981)
Kharlampovich, O.G.: The word problem for groups and Lie algebras, Doctor’s Thesis (Russian), Moscow Steklov Mathematical Institute (1990)
Kharlampovich, O.G.: The universal theory of the class of finite nilpotent groups is undecidable. Mat. Zametki 33(4), 499–516 (1983)
Kharlampovich, O.G., Sapir, M.V.: A non-residually finite, relatively finitely presented group in the variety $$\mathfrak{N}_2\mathfrak{A}$$ N 2 A . Combinatorial and Geometric Group Theory (Edinburgh, 1993), pp. 184–189, London Math. Soc. Lecture Note Ser., 204, Cambridge Universiy Press, Cambridge (1995)
Kharlampovich, O., Sapir, M.: Algorithmic problem in varieties. Int. J. Algebra Comput. 5(4–5), 379–602 (1995)
Kourovskaja tetrad’ (Unsolved Problems in Group Theory), 5th edn. Novosibirsk, (1976)
Lipton, R.J., Zalcstein, Y.: Word problems solvable in logspace. J. Assoc. Comput. Mach. 24, 522–526 (1977)
Malcev, A.I.: Algorithms and Recursive Functions. Nauka, Moscow (1965)
Malcev, A.I.: On Homomorphisms onto finite groups (Russian). Uchen. Zap. Ivanovskogo Gos. Ped. Inst. 18 (1958), pp. 49–60. English translation in: Amer. Math. Soc. Transl. Ser. 2, 119, pp. 67–79 (1983)
McKenzie, R., Thompson, R.J.: An elementary construction of unsolvable word problems in group theory. Word problems: decision problems and the Burnside problem in group theory (Conf., Univ. California, Irvine, Calif. 1969; dedicated to Hanna Neumann), Studies in Logic and the Foundations of Math., 71, p. 457478. Amsterdam (1973)
Meskin, S.: A finitely generated residually finite group with an unsolvable word problem. Proc. Am. Math. Soc. 43(1), 8–10 (1974)
Madlener, K., Otto, F.: Pseudonatural algorithms for the word problem for finitely presented monoids and groups. J. Symb. Comput. 1(4), 383–418 (1985)
McKinsey, J.: The decision problem for some classes of sentences without quantifiers. J. Symb. Log. 8, 61–76 (1973)
Miasnikov, A., Ushakov, A., Won, D.: The word problem in Baumslag group is polynomial time decidable. J. Algebra 345, 324–342 (2011)
Mikhailova, K.A.: The occurrence problem for direct products of groups. Dokl. Akad. Nauk SSSR 119, 1103–1105 (1958)
Nikolov, N., Segal, D.: Finite index subgroups in pro-finite groups. C. R. Math. Acad. Sci. Paris 337(5), 303–308 (2003)
Ollivier, Y., Wise, D.T.: Cubulating random groups at density less than 1/6. Trans. Am. Math. Soc. 363(9), 4701–4733 (2011)
Olshanskii, A., Sapir, M.: Length and area functions on groups and quasi-isometric Higman embeddings. Int. J. Algebra Comput. 11, 137–170 (2001)
Papadimitriou, C.H.: Computational Complexity. Addison-Wesley Publishing Company, Reading (1994)
Pueschel, K.: Hydra group doubles are not residually finite, arXiv:1507.02554
Platonov, A.N.: An isoperametric function of the Baumslag–Gersten group. Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2004, no. 3, pp. 12–17, translation in Moscow Univ. Math. Bull. 59 (2004), no. 3, p. 1217 (2005)
Remeslennikov, V.: Studies on infinite solvable and finitely approximable groups. Mat. Zametki 17(5), 819–824 (1975)
Remak, R.: Uber der Zerlegung der endlichen Gruppen in direkte unzerlegbare Faktoren. J. Reine Angew. Math. 139, 293308 (1911)
Rotman, J.J.: An Introduction to the Theory of Groups, 4th edn. Graduate Texts in Mathematics, 148. Springer, New York (1995)
Sapir, M.: Weak word problem for finite semigroups. Monoids and Semigroups with Applications (Berkeley, CA, 1989), pp. 206–219. World Science Publisher, River Edge (1991)
Sapir, M.: Asymptotic invariants, complexity of groups and related problems. Bull. Math. Sci. 1(2), 277–364 (2011)
Sapir, M.: Minsky machines and algorithmic problems, accepted in Essays Dedicated to Yuri Gurevich on the Occasion of His 75th Birthday, LNCS. Springer, Berlin (2015)
Sapir, M., Birget, J.C., Rips, E.: Isoperimetric and isodiametric functions of groups. Ann. Math. 156(2), 345–466 (2002)
Slobodskoi, A.M.: Undecidability of the universal theory of finite groups. Algebra Log. 20(2), 207–230 (1981)
Waack, St: On the parallel complexity of linear groups. RAIRO Inform. Theor. Appl. 25, 323–354 (1991)
Wise, D.T.: The structure of groups with a quasiconvex hierarhy. Preprint (2011)
Wise, D.T.: A residually finite version of Rips’s construction. Bull. Lond. Math. Soc. 35(1), 23–29 (2003)
Zel’manov, E.I.: The solution of the restricted Burnside problem for groups of odd exponent. Izv. Akad. Nauk. SSSR. Ser. Mat., 54(1), 42–59 (1990). Transl. in Math. USSR-Izv. 36(1), 41–60 (1991)
Zel’manov, E.I.: The solution of the restricted Burnside problem for 2-groups. Mat. Sb. 182(4), 568–592 (1991)