Algebras and Banach spaces of Dirichlet series with maximal Bohr’s strip

Revista Matemática Complutense - Tập 36 - Trang 607-625 - 2022
Thiago R. Alves1, Leonardo Brito1, Daniel Carando2
1Departamento de Matemática, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus, Brazil
2Departamento de Matemática, Facultad de Cs. Exactas y Naturales, Universidad de Buenos Aires and IMAS-UBA-CONICET, Buenos Aires, Argentina

Tóm tắt

We study linear and algebraic structures in sets of Dirichlet series with maximal Bohr’s strip. More precisely, we consider a set $${\mathscr {M}}$$ of Dirichlet series which are uniformly continuous on the right half plane and whose strip of uniform but not absolute convergence has maximal width, i.e., $$\nicefrac {1}{2}$$ . Considering the uniform norm, we show that $${\mathscr {M}}$$ contains an isometric copy of $$\ell _1$$ (except zero) and is strongly $$\aleph _0$$ -algebrable. Also, there is a dense $$G_\delta $$ set such that any of its elements generates a free algebra contained in $${\mathscr {M}}\cup \{0\}$$ . Furthermore, we investigate $$\mathscr {M}$$ as a subset of the Hilbert space of Dirichlet series whose coefficients are square-summable. In this case, we prove that $${\mathscr {M}}$$ contains an isometric copy of $$\ell _2$$ (except zero).

Tài liệu tham khảo

Alves, T.R., Carando, D.: Holomorphic functions with large cluster sets. Math. Nachr. 294, 1250–1261 (2021) Aron, R.M., García, D., Maestre, M.: Linearity in non-linear problems. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 95, 7–12 (2001) Aron, R., Bernal-González, L., Pellegrino, D., Seoane-Sepúlveda, J.B.: Lineability: The search for linearity in Mathematics. Monographs and Research Notes in Mathematics, Chapman & Hall/CRC, Boca Raton (2016) Aron, R.M., Bayart, F., Gauthier, P.M., Maestre, M., Nestoridis, V.: Dirichlet approximation and universal Dirichlet series. Proc. Am. Math. Soc. 145, 4449–4464 (2017) Bartoszewicz, A., Glab, S.: Strong algebrability of sets of sequences of functions. Proc. Am. Math. Soc. 141, 827–835 (2013) Bayart, F.: Linearity of sets of strange functions. Mich. Math. J. 53, 291–303 (2005) Bayart, F.: Topological and algebraic genericity of divergence and of universality. Studia Math. 167, 161–181 (2005) Bayart, F., Quarta, L.: Algebras in sets of queer functions. Isr. J. Math. 158, 285–296 (2007) Bernal-González, L., Pellegrino, D., Seoane-Sepúlveda, J.B.: Linear subsets of nonlinear sets in topological vector spaces. Bull. Am. Math. Soc. 51, 71–130 (2014) Bohnenblust, H.F., Hille, E.: On the absolute convergence of Dirichlet series. Ann. Math. (2) 32(3), 600–622 (1931) Bohr, H.: Über die Bedeutung der Potenzreihen unendlich vieler Variabeln in der Theorie der Dirichlet–Schen Reihen $\sum \frac{a_n}{n^s}$. Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl. 441–488 (1913) Bohr, H.: Über die gleichmäßige Konvergenz Dirichletscher Reihen. J. Reine Angew. Math. 143, 203–211 (1913) Conejero, J.A., Seoane-Sepúlveda, J.B., Sevilla-Peris, P.: Isomorphic copies of $\ell _1$ for $m$-homogeneous non-analytic Bohnenblust-Hille polynomials. Math. Nachr. 290(2–3), 218–225 (2017) Defant, A., García, D., Maestre, M., Sevilla-Peris, P.: Dirichlet Series and Holomorphic Functions in High Dimensions (New Mathematical Monographs). Cambridge University Press, Cambridge (2019) Gurarij, V.I.: Linear spaces composed of non-differentiable functions. C. R. Acad. Bulg. Sci. 44(5), 13–16 (1991) Queffélec, H., Queffélec, M.: Diophantine Approximation and Dirichlet Series. Harish-Chandra Research Institute Lecture Notes, vol. 2. Hindustan Book Agency, New Delhi (2013)