Algebras and Banach spaces of Dirichlet series with maximal Bohr’s strip
Tóm tắt
We study linear and algebraic structures in sets of Dirichlet series with maximal Bohr’s strip. More precisely, we consider a set
$${\mathscr {M}}$$
of Dirichlet series which are uniformly continuous on the right half plane and whose strip of uniform but not absolute convergence has maximal width, i.e.,
$$\nicefrac {1}{2}$$
. Considering the uniform norm, we show that
$${\mathscr {M}}$$
contains an isometric copy of
$$\ell _1$$
(except zero) and is strongly
$$\aleph _0$$
-algebrable. Also, there is a dense
$$G_\delta $$
set such that any of its elements generates a free algebra contained in
$${\mathscr {M}}\cup \{0\}$$
. Furthermore, we investigate
$$\mathscr {M}$$
as a subset of the Hilbert space of Dirichlet series whose coefficients are square-summable. In this case, we prove that
$${\mathscr {M}}$$
contains an isometric copy of
$$\ell _2$$
(except zero).
Tài liệu tham khảo
Alves, T.R., Carando, D.: Holomorphic functions with large cluster sets. Math. Nachr. 294, 1250–1261 (2021)
Aron, R.M., García, D., Maestre, M.: Linearity in non-linear problems. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 95, 7–12 (2001)
Aron, R., Bernal-González, L., Pellegrino, D., Seoane-Sepúlveda, J.B.: Lineability: The search for linearity in Mathematics. Monographs and Research Notes in Mathematics, Chapman & Hall/CRC, Boca Raton (2016)
Aron, R.M., Bayart, F., Gauthier, P.M., Maestre, M., Nestoridis, V.: Dirichlet approximation and universal Dirichlet series. Proc. Am. Math. Soc. 145, 4449–4464 (2017)
Bartoszewicz, A., Glab, S.: Strong algebrability of sets of sequences of functions. Proc. Am. Math. Soc. 141, 827–835 (2013)
Bayart, F.: Linearity of sets of strange functions. Mich. Math. J. 53, 291–303 (2005)
Bayart, F.: Topological and algebraic genericity of divergence and of universality. Studia Math. 167, 161–181 (2005)
Bayart, F., Quarta, L.: Algebras in sets of queer functions. Isr. J. Math. 158, 285–296 (2007)
Bernal-González, L., Pellegrino, D., Seoane-Sepúlveda, J.B.: Linear subsets of nonlinear sets in topological vector spaces. Bull. Am. Math. Soc. 51, 71–130 (2014)
Bohnenblust, H.F., Hille, E.: On the absolute convergence of Dirichlet series. Ann. Math. (2) 32(3), 600–622 (1931)
Bohr, H.: Über die Bedeutung der Potenzreihen unendlich vieler Variabeln in der Theorie der Dirichlet–Schen Reihen $\sum \frac{a_n}{n^s}$. Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl. 441–488 (1913)
Bohr, H.: Über die gleichmäßige Konvergenz Dirichletscher Reihen. J. Reine Angew. Math. 143, 203–211 (1913)
Conejero, J.A., Seoane-Sepúlveda, J.B., Sevilla-Peris, P.: Isomorphic copies of $\ell _1$ for $m$-homogeneous non-analytic Bohnenblust-Hille polynomials. Math. Nachr. 290(2–3), 218–225 (2017)
Defant, A., García, D., Maestre, M., Sevilla-Peris, P.: Dirichlet Series and Holomorphic Functions in High Dimensions (New Mathematical Monographs). Cambridge University Press, Cambridge (2019)
Gurarij, V.I.: Linear spaces composed of non-differentiable functions. C. R. Acad. Bulg. Sci. 44(5), 13–16 (1991)
Queffélec, H., Queffélec, M.: Diophantine Approximation and Dirichlet Series. Harish-Chandra Research Institute Lecture Notes, vol. 2. Hindustan Book Agency, New Delhi (2013)