Algebraically stabilized Lagrange multiplier method for frictional contact mechanics with hydraulically active fractures

Andrea Franceschini1, Nicola Castelletto2, Joshua A. White2, Hamdi A. Tchelepi1
1Energy Resources Engineering, Stanford University, Stanford, United States
2Atmospheric, Earth, and Energy Division, Lawrence Livermore National Laboratory, United States

Tài liệu tham khảo

Fossen, 2016 Urbancic, 1993, Microseismicity derived fault-planes and their relationship to focal mechanism, stress inversion, and geologic data, Geophys. Res. Lett., 20, 2475, 10.1029/93GL02937 Dockrill, 2010, Structural controls on leakage from a natural CO2 geologic storage site: Central utah, USA, J. Struct. Geol., 32, 1768, 10.1016/j.jsg.2010.01.007 Morris, 1996, Slip-tendency analysis and fault reactivation, Geology, 24, 275, 10.1130/0091-7613(1996)024<0275:STAAFR>2.3.CO;2 Zhang, 2007, Effects of frictional geological discontinuities on hydraulic fracture propagation, 1 Ferronato, 2008, Numerical modelling of regional faults in land subsidence prediction above gas/oil reservoirs, Int. J. Numer. Anal. Methods Geomech., 32, 633, 10.1002/nag.640 Witherspoon, 1980, Validity of cubic law for fluid flow in a deformable rock fracture, Water Resour. Res., 16, 1016, 10.1029/WR016i006p01016 Zimmerman, 1996, Hydraulic conductivity of rock fractures, Transp. Porous Media, 23, 1, 10.1007/BF00145263 Zhang, 2019, Experimental study on seepage and stress of single-fracture radiation flow, KSCE J. Civ. Eng., 23, 1132, 10.1007/s12205-019-1519-7 Wriggers, 2006 Dahi-Taleghani, 2011, Numerical modeling of multistranded-hydraulic-fracture propagation: accounting for the interaction between induced and natural fractures, SPE J., 16, 575, 10.2118/124884-PA Goodman, 1968, A model for the mechanics of jointed rock, J. Soil Mech. Found. Div., 94, 637, 10.1061/JSFEAQ.0001133 Garipov, 2016, Discrete fracture model for coupled flow and geomechanics, Comput. Geosci., 20, 149, 10.1007/s10596-015-9554-z Settgast, 2017, A fully coupled method for massively parallel simulation of hydraulically driven fractures in 3-dimensions, Int. J. Numer. Anal. Methods Geomech., 41, 627, 10.1002/nag.2557 Rutqvist, 2002, A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock, Int. J. Rock Mech. Min. Sci., 39, 429, 10.1016/S1365-1609(02)00022-9 Rutqvist, 2008, Coupled reservoir–geomechanical analysis of the potential for tensile and shear failure associated with CO2 injection in multilayered reservoir–caprock systems, Int. J. Rock Mech. Min. Sci., 45, 132, 10.1016/j.ijrmms.2007.04.006 Pan, 2014, An approach for modeling rock discontinuous mechanical behavior under multiphase fluid flow conditions, Rock Mech. Rock Eng., 47, 589, 10.1007/s00603-013-0428-1 Lee, 2019, TOUGH-UDEC: A simulator for coupled multiphase fluid flows, heat transfers and discontinuous deformations in fractured porous media, Comput. Geosci., 126, 120, 10.1016/j.cageo.2019.02.004 Shakiba, 2015, Using embedded discrete fracture model (EDFM) and microseismic monitoring data to characterize the complex hydraulic fracture networks, 1 Ren, 2016, A fully coupled XFEM-EDFM model for multiphase flow and geomechanics in fractured tight gas reservoirs, Procedia Comput. Sci., 80, 1404, 10.1016/j.procs.2016.05.449 Wong, 2019, Investigation of water coning phenomena in a fractured reservoir using the embedded discrete fracture model, edfm Wu, 2019, Integrating complex fracture modeling and EDFM to optimize well spacing in shale oil reservoirs Deb, 2010, Extended finite element method (XFEM) for analysis of cohesive rock joint, Geotech. Geol. Eng., 28, 643, 10.1007/s10706-010-9323-7 Zhang, 2011, Extended finite element simulation of crack propagation in fractured rock masses, Mater. Res. Innov., 15, s594, 10.1179/143307511X12858957677037 Mohammadi, 2012 Flemisch, 2016, A review of the XFEM-based approximation of flow in fractured porous media, 47 Vahab, 2017, Numerical investigation of the flow regimes through hydraulic fractures using the X-FEM technique, Eng. Fract. Mech., 169, 146, 10.1016/j.engfracmech.2016.11.017 Khoei, 2018, An enriched–FEM technique for numerical simulation of interacting discontinuities in naturally fractured porous media, Comput. Methods Appl. Mech. Engrg., 331, 197, 10.1016/j.cma.2017.11.016 Verhoosel, 2013, A phase-field model for cohesive fracture, Internat. J. Numer. Methods Engrg., 96, 43, 10.1002/nme.4553 Amiri, 2014, Phase-field modeling of fracture in linear thin shells, Theor. Appl. Fract. Mech., 69, 102, 10.1016/j.tafmec.2013.12.002 Wheeler, 2014, An augmented-Lagrangian method for the phase-field approach for pressurized fractures, Comput. Methods Appl. Mech. Engrg., 271, 69, 10.1016/j.cma.2013.12.005 Geelen, 2019, A phase-field formulation for dynamic cohesive fracture, Comput. Methods Appl. Mech. Engrg., 348, 680, 10.1016/j.cma.2019.01.026 Simo, 1998 Perić, 1992, Computational model for 3-D contact problems with friction based on the penalty method, Internat. J. Numer. Methods Engrg., 35, 1289, 10.1002/nme.1620350609 Zang, 2011, A contact algorithm for 3D discrete and finite element contact problems based on penalty function method, Comput. Mech., 48, 541, 10.1007/s00466-011-0606-5 Hild, 2010, A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics, Numer. Math., 115, 101, 10.1007/s00211-009-0273-z Jha, 2014, Coupled multiphase flow and poromechanics: A computational model of pore pressure effects on fault slip and earthquake triggering, Water Resour. Res., 5, 3776, 10.1002/2013WR015175 Franceschini, 2016, A novel Lagrangian approach for the stable numerical simulation of fault and fracture mechanics, J. Comput. Phys., 314, 503, 10.1016/j.jcp.2016.03.032 Berge, 2020, Finite volume discretization for poroelastic media with fractures modeled by contact mechanics, Internat. J. Numer. Methods Engrg., 121, 644, 10.1002/nme.6238 Köppel, 2019, A stabilized Lagrange multiplier finite-element method for flow in porous media with fractures, GEM Int. J. Geomath., 10, 7, 10.1007/s13137-019-0117-7 Zavarise, 1998, A method for solving contact problems, Internat. J. Numer. Methods Engrg., 42, 473, 10.1002/(SICI)1097-0207(19980615)42:3<473::AID-NME367>3.0.CO;2-A Ferronato, 2012, Parallel solution to ill-conditioned FE geomechanical problems, Int. J. Numer. Anal. Methods Geomech., 36, 422, 10.1002/nag.1012 Benzi, 2004, A preconditioner for generalized saddle point problems, SIAM J. Matrix Anal. Appl., 26, 20, 10.1137/S0895479802417106 Benzi, 2005, Numerical solution of saddle point problems, Acta Numer., 14, 1, 10.1017/S0962492904000212 Franceschini, 2019, Block preconditioning for fault/fracture mechanics saddle-point problems, Comput. Methods Appl. Mech. Engrg., 344, 376, 10.1016/j.cma.2018.09.039 Wriggers, 2008, A formulation for frictionless contact problems using a weak form introduced by Nitsche, Comput. Mech., 41, 407, 10.1007/s00466-007-0196-4 Chouly, 2013, A Nitsche-based method for unilateral contact problems: numerical analysis, SIAM J. Numer. Anal., 51, 1295, 10.1137/12088344X Annavarapu, 2014, A Nitsche stabilized finite element method for frictional sliding on embedded interfaces. Part I: single interface, Comput. Methods Appl. Mech. Engrg., 268, 417, 10.1016/j.cma.2013.09.002 Capatina, 2016, Nitsche’s extended finite element method for a fracture model in porous media, Appl. Anal., 95, 2224, 10.1080/00036811.2015.1075007 Lin, 1994 Cavalieri, 2013, An augmented Lagrangian technique combined with a mortar algorithm for modelling mechanical contact problems, Internat. J. Numer. Methods Engrg., 93, 420, 10.1002/nme.4391 Pietrzak, 1999, Large deformation frictional contact mechanics: continuum formulation and augmented Lagrangian treatment, Comput. Methods Appl. Mech. Engrg., 177, 351, 10.1016/S0045-7825(98)00388-0 Hirmand, 2015, An augmented Lagrangian contact formulation for frictional discontinuities with the extended finite element method, Finite Elem. Anal. Des., 107, 28, 10.1016/j.finel.2015.08.003 Belgacem, 1997, The mortar element method for three dimensional finite elements, ESAIM Math. Model. Numer. Anal., 31, 289, 10.1051/m2an/1997310202891 Flemisch, 2005, A new dual mortar method for curved interfaces: 2D elasticity, Internat. J. Numer. Methods Engrg., 63, 813, 10.1002/nme.1300 Seitz, 2016, Isogeometric dual mortar methods for computational contact mechanics, Comput. Methods Appl. Mech. Engrg., 301, 259, 10.1016/j.cma.2015.12.018 Popp, 2014, Dual mortar methods for computational contact mechanics–overview and recent developments, GAMM-Mitt., 37, 66, 10.1002/gamm.201410004 Wohlmuth, 2000, A mortar finite element method using dual spaces for the Lagrange multiplier, SIAM J. Numer. Anal., 38, 989, 10.1137/S0036142999350929 Laursen, 2006, Mortar-based surface-to-surface contact algorithms in large deformation solid mechanics, 5 Eymard, 2000, Finite volume methods, vol. 7, 713 Wohlmuth, 2011, Variationally consistent discretization schemes and numerical algorithms for contact problems, Acta Numer., 20, 569, 10.1017/S0962492911000079 Brezzi, 1984, On the stabilization of finite element approximations of the Stokes equations, 11 Brezzi, 2001, Error estimates for the three-field formulation with bubble stabilization, Math. Comp., 70, 911, 10.1090/S0025-5718-00-01250-3 Hauret, 2007, A discontinuous stabilized mortar method for general 3D elastic problems, Comput. Methods Appl. Mech. Engrg., 196, 4881, 10.1016/j.cma.2007.06.014 Caylak, 2012, Stabilization of mixed tetrahedral elements at large deformations, Internat. J. Numer. Methods Engrg., 90, 218, 10.1002/nme.3320 Wohlmuth, 2001 Silvester, 1990, Stabilised bilinear-constant velocity-pressure finite elements for the conjugate gradient solution of the Stokes problem, Comput. Methods Appl. Mech. Engrg., 79, 71, 10.1016/0045-7825(90)90095-4 Bressan, 2013, Isogeometric discretizations of the Stokes problem: stability analysis by the macroelement technique, IMA J. Numer. Anal., 33, 629, 10.1093/imanum/drr056 Boffi, 2013 He, 2005, Stabilized finite-element method for the stationary Navier–Stokes equations, J. Eng. Math., 51, 367, 10.1007/s10665-004-3718-5 Coussy, 2004 Kikuchi, 1988 Laursen, 2003 Kamenov, 2013, Laboratory measurement of hydraulic fracture conductivities in the Barnett shale, 216 Johnson, 2016 Schrefler, 2006, On adaptive refinement techniques in multi-field problems including cohesive fracture, Comput. Methods Appl. Mech. Engrg., 195, 444, 10.1016/j.cma.2004.10.014 Karimi-Fard, 2003, An efficient discrete fracture model applicable for general purpose reservoir simulators, 1 Eymard, 2007, A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis, C. R. Math., 344, 403, 10.1016/j.crma.2007.01.024 Agélas, 2010, An abstract analysis framework for nonconforming approximations of diffusion problems on general meshes, Int. J. Finite Vol., 7, 1 Barth, 2018, Finite volume methods: foundation and analysis, 1 Karimi-Fard, 2016, A general gridding, discretization, and coarsening methodology for modeling flow in porous formations with discrete geological features, Adv. Water Resour., 96, 354, 10.1016/j.advwatres.2016.07.019 Droniou, 2014, Finite volume schemes for diffusion equations: introduction to and review of modern methods, Math. Models Methods Appl. Sci., 24, 1575, 10.1142/S0218202514400041 Terekhov, 2017, Cell-centered nonlinear finite-volume methods for the heterogeneous anisotropic diffusion problem, J. Comput. Phys., 330, 245, 10.1016/j.jcp.2016.11.010 Schneider, 2018, Monotone nonlinear finite-volume method for challenging grids, Comput. Geosci., 10.1007/s10596-017-9710-8 Nocedal, 2006 Antil, 2018 Franceschini, 2018 Brezzi, 1990, A discourse on the stability conditions for mixed finite element formulations, Comput. Methods Appl. Mech. Engrg., 82, 27, 10.1016/0045-7825(90)90157-H Elman, 2014 Elman, 2002, Performance and analysis of saddle point preconditioners for the discrete steady-state Navier–Stokes equations, Numer. Math., 90, 665, 10.1007/s002110100300 Borja, 2008, Assumed enhanced strain and the extended finite element methods: A unification of concepts, Comput. Methods Appl. Mech. Engrg., 197, 2789, 10.1016/j.cma.2008.01.019 Burman, 2010, Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method, Comput. Methods Appl. Mech. Engrg., 199, 2680, 10.1016/j.cma.2010.05.011 Puso, 2012, An embedded mesh method in a multiple material ALE, Comput. Methods Appl. Mech. Engrg., 245, 273, 10.1016/j.cma.2012.07.014 Puso, 2015, An embedded mesh method using piecewise constant multipliers with stabilization: mathematical and numerical aspects, Internat. J. Numer. Methods Engrg., 104, 697, 10.1002/nme.4796 Phan, 2003, Symmetric-Galerkin BEM simulation of fracture with frictional contact, Internat. J. Numer. Methods Engrg., 57, 835, 10.1002/nme.707 Manzini, 2008, A finite volume method for advection–diffusion problems in convection-dominated regimes, Comput. Methods Appl. Mech. Engrg., 197, 1242, 10.1016/j.cma.2007.11.014 Valko, 1995 Griffith, 1920, The phenomena of rupture and flow in solids, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 221, 163 Zienkiewicz, 2000 S. Khristianovic, Y. Zheltov, Formation of vertical fractures by means of highly viscous fluids, in: Proc. 4th World Petroleum Congress, Rome, vol. 2, 1955, pp. 579–586. Geertsma, 1969, A rapid method of predicting width and extent of hydraulically induced fractures, J. Pet. Technol., 21, 1, 10.2118/2458-PA Adachi, 2002, Self-similar solution of a plane-strain fracture driven by a power-law fluid, Int. J. Numer. Anal. Methods Geomech., 26, 579, 10.1002/nag.213 Detournay, 2004, Propagation regimes of fluid-driven fractures in impermeable rocks, Int. J. Geomech., 4, 35, 10.1061/(ASCE)1532-3641(2004)4:1(35) Rahman, 2010, A review of hydraulic fracture models and development of an improved pseudo-3D model for stimulating tight oil/gas sand, Energy Sources A, 32, 1416, 10.1080/15567030903060523 Selvadurai, 1980, The penny-shaped crack problem for a finitely deformed incompressible elastic solid, Int. J. Fract., 16, 327, 10.1007/BF00018237 Savitski, 2002, Propagation of a penny-shaped fluid-driven fracture in an impermeable rock: asymptotic solutions, Int. J. Solids Struct., 39, 6311, 10.1016/S0020-7683(02)00492-4 Abe, 1976, Growth rate of a penny-shaped crack in hydraulic fracturing of rocks, 2, J. Geophys. Res., 81, 6292, 10.1029/JB081i035p06292 Abramowitz, 1988 Desroches, 1994, The crack tip region in hydraulic fracturing, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 447, 39 Carbonell, 1999, A comparison between a semi-analytical and a numerical solution of a two-dimensional hydraulic fracture, Int. J. Solids Struct., 36, 4869, 10.1016/S0020-7683(98)00269-8 Carrier, 2012, Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model, Eng. Fract. Mech., 79, 312, 10.1016/j.engfracmech.2011.11.012 Lai, 2015, Experimental study on penny-shaped fluid-driven cracks in an elastic matrix, Proc. R. Soc. A, 471, 1, 10.1098/rspa.2015.0255