Algebraic decision procedures for local testability

Robert McNaughton1
1Department of Mathematics, Rensselaer Polytechnic Institute, Troy, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

J. A. Brzozowski andI. Simon, Characterizations of locally testable events,Discrete Mathematics 4 (1973), 243–271.

N. Chomsky andM. P. Schützenberger, The algebraic theory of context-free languages, inComputer Programming and Formal Systems (P. Braffort and D. Hirschberg, editors), North Holland, Amsterdam, 1963, pp. 118–161.

L. S. Levy andM. Freeman, Finitely generated events, unpublished paper, 1970.

R. McNaughton andS. Papert,Counter-free Automata, M.I.T. Press, Cambridge, Mass., 1971.

Yu. T. Medvedev, On the class of events representable in a finite automaton (translated from the Russian), inSequential Machines—Selected Papers (E. F. Moore, ed.), Addison-Wesley, 1964, pp. 215–227.

M. Perles, M. O. Rabin andE. Shamir, The theory of definite automata,Trans. IEEE EC-12 (1963), 233–243.

F. P. Ramsey, On a problem of formal logic,Proc. London Math. Soc.,30 (Ser. 2, 1928), Part 4, 338–384. Reprinted in a paperback,The Foundations of Mathematics and other Logical Essays, by F. P. Ramsey, Littlefield, Adams and Co., Patterson, N. J., 1960. (This book was first printed by Routledge and Kegan Paul, London, 1931).

Y. Zalcstein, Locally testable languages,J. Computer Systems Science 6 (1972), 151–167.

Y. Zalcstein, Locally testable semigroups,Semigroup Forum 5 (1973), 216–227.

Y. Zalcstein, Syntactic semigroups of some classes of star-free languages,Proc. International Symposium on Theory of Automata, Languages and Programming (IRIA, Paris), North Holland Publishing Company, Amsterdam, 1972, pp. 135–144.