Algal wastewater treatment: Photoautotrophic vs. mixotrophic processes
Tài liệu tham khảo
ASCE
McCarty, 2011, Domestic wastewater treatment as a net energy producer–can this be achieved?, Environ. Sci. Technol., 45, 7100, 10.1021/es2014264
820-R-14-006 EPA, 2014
Jenssen, 2007, Sustainable wastewater treatment, 27
Oswald, 1960, Biological transformation of solar energy, Adv. Appl. Microbiol., 2, 223, 10.1016/S0065-2164(08)70127-8
Oswald, 1963, The high-rate pond in waste disposal, Dev. Ind. Microbiol., 4, 112
Young, 2017, Mini-review: high rate algal ponds, flexible systems for sustainable wastewater treatment, World J. Microbiol. Biotechnol., 33, 117, 10.1007/s11274-017-2282-x
Shen, 2014, Carbon dioxide bio-fixation and wastewater treatment via algae photochemical synthesis for biofuels production, RSC Adv., 4, 49672, 10.1039/C4RA06441K
Wang, 2014, Mixotrophic cultivation of microalgae for biodiesel production: status and prospects, Appl. Biochem. Biotechnol., 172, 3307, 10.1007/s12010-014-0729-1
Whitton, 2016, Influence of microalgal N and P composition on wastewater nutrient remediation, Water Res., 91, 371, 10.1016/j.watres.2015.12.054
Richmond
Martínez, 2000, Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus, Bioresour. Technol., 73, 263, 10.1016/S0960-8524(99)00121-2
Nurdogan, 1995, Enhanced nutrient removal in high-rate ponds, Water Sci. Technol., 31, 33, 10.2166/wst.1995.0453
García, 2000, High rate algal pond operating strategies for urban wastewater nitrogen removal, J. Appl. Phycol., 12, 331, 10.1023/A:1008146421368
Picot, 1991, Nutrient removal by high rate pond system in a Mediterranean climate (France), Water Sci. Technol., 23, 1535, 10.2166/wst.1991.0607
Park, 2011, Wastewater treatment high rate algal ponds for biofuel production, Bioresour. Technol., 102, 35, 10.1016/j.biortech.2010.06.158
Ogawa, 1981, Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus, Biotechnol. Bioeng., 23, 1121, 10.1002/bit.260230519
Perez-Garcia, 2011, Heterotrophic cultures of microalgae: metabolism and potential products, Water Res., 45, 11, 10.1016/j.watres.2010.08.037
Cecchin, 2018, Molecular basis of autotrophic vs mixotrophic growth in Chlorella sorokiniana, Sci. Rep., 8, 6465, 10.1038/s41598-018-24979-8
Wan, 2011, The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana, Appl. Microbiol. Biotechnol., 91, 835, 10.1007/s00253-011-3399-8
Marquez, 1993, Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic conditions, J. Ferment. Bioeng., 76, 408, 10.1016/0922-338X(93)90034-6
Li, 2014, Mixotrophic cultivation of a Chlorella sorokiniana strain for enhanced biomass and lipid production, Biomass Bioenergy, 66, 204, 10.1016/j.biombioe.2014.04.010
Zhang, 2017, The synergistic energy and carbon metabolism under mixotrophic cultivation reveals the coordination between photosynthesis and aerobic respiration in Chlorella zofingiensis, Algal Res., 25, 109, 10.1016/j.algal.2017.05.007
Cheirsilp, 2012, Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation, Bioresour. Technol., 110, 510, 10.1016/j.biortech.2012.01.125
Cerón Garcí, 2000, Mixotrophic growth of Phaeodactylum tricornutum on glycerol: growth rate and fatty acid profile, J. Appl. Phycol., 12, 239, 10.1023/A:1008123000002
Liang, 2009, Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions, Biotechnol. Lett., 31, 1043, 10.1007/s10529-009-9975-7
Chojnacka, 2004, Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures, Enzym. Microb. Technol., 34, 461, 10.1016/j.enzmictec.2003.12.002
Perez-Garcia, 2015, Microalgal heterotrophic and mixotrophic culturing for bio-refining: from metabolic routes to techno-economics, 61
Henkanatte-Gedera, 2015, Algal-based, single-step treatment of urban wastewaters, Bioresour. Technol., 189, 273, 10.1016/j.biortech.2015.03.120
Henkanatte-Gedera, 2017, Removal of dissolved organic carbon and nutrients from urban wastewaters by Galdieria sulphuraria: laboratory to field scale demonstration, Algal Res., 24, 450, 10.1016/j.algal.2016.08.001
Selvaratnam, 2014, Evaluation of a thermo-tolerant acidophilic alga, Galdieria sulphuraria, for nutrient removal from urban wastewaters, Bioresour. Technol., 156, 395, 10.1016/j.biortech.2014.01.075
Selvaratnam, 2015, Algal biofuels from urban wastewaters: maximizing biomass yield using nutrients recycled from hydrothermal processing of biomass, Bioresour. Technol., 182, 232, 10.1016/j.biortech.2015.01.134
Delanka-Pedige, 2019, Pathogen reduction in an algal-based wastewater treatment system employing Galdieria sulphuraria, Algal Res., 39, 101423, 10.1016/j.algal.2019.101423
Sebastian, 1984, Total removal of coliforms and E. coli from domestic sewage by high-rate pond mass culture of Scenedesmus obliquus, Environ. Pollut. Ser. A, Ecol. Biol., 34, 197, 10.1016/0143-1471(84)90116-8
El Hamouri, 1994, High-rate algal pond performances in faecal coliforms and helminth egg removals, Water Res., 28, 171, 10.1016/0043-1354(94)90131-7
Craggs, 2012, Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production, J. Appl. Phycol., 24, 329, 10.1007/s10811-012-9810-8
García, 2008, A comparison of bacterial removal efficiencies in constructed wetlands and algae-based systems, Ecol. Eng., 32, 238, 10.1016/j.ecoleng.2007.11.012
Ruas, 2018, Evaluation of domestic wastewater treatment using microalgal-bacterial processes: effect of CO2 addition on pathogen removal, J. Appl. Phycol., 30, 921, 10.1007/s10811-017-1280-6
Ansa, 2008
Ruiz-Marin, 2010, Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater, Bioresour. Technol., 101, 58, 10.1016/j.biortech.2009.02.076
Ansa, 2015, A review of the mechanisms of faecal coliform removal from algal and duckweed waste stabilization pond systems, Am. J. Environ. Sci., 11, 28, 10.3844/ajessp.2015.28.34
Munasinghe-Arachchige, 2019, Factors contributing to bacteria inactivation in the Galdieria sulphuraria-based wastewater treatment system, Algal Res., 38, 10.1016/j.algal.2018.101392