Khối tự tổ chức TiO2−x−y C x N y nano hạt xốp từ việc bay hơi dung môi rượu hướng đến hoạt động xúc tác quang dưới ánh sáng khả kiến

Springer Science and Business Media LLC - Tập 16 - Trang 1-11 - 2014
Shou-Heng Liu1, Han-Ren Syu1, Chung-Yi Wu1
1Department of Chemical and Materials Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan

Tóm tắt

Quá trình tự tổ chức do bay hơi dung môi một bước (SEISA) đã được chứng minh để chuẩn bị các hạt nano TiO2 xốp có đồng pha carbon và nitơ (MesoTiO2−x−y C x N y -S) bằng cách sử dụng dung dịch ion làm nguồn carbon và nitơ cũng như khuôn xốp. Sau khi bay hơi các dung môi khác nhau (methanol, ethanol và isopropanol) và nung ở 773 K, các mẫu MesoTiO2−x−y C x N y -S thu được đã được đặc trưng hệ thống bằng nhiều kỹ thuật quang phổ và phân tích, bao gồm nhiễu xạ tia X góc nhỏ và lớn (XRD), Raman, kính hiển vi điện tử truyền qua (TEM), isotherm hấp thụ–khử N2, quang phổ hồng ngoại biến đổi Fourier (FTIR), và quang phổ photon tia X (XPS). Các kết quả chỉ ra rằng các dung môi đóng một vai trò thiết yếu đối với vi cấu trúc hóa học, trạng thái phần tử đồng pha và hiệu suất xúc tác quang của các chất xúc tác. Các mẫu MesoTiO2−x−y C x N y -I có khoảng chênh năng lượng thấp nhất khoảng 2.75 eV và khả năng hấp thụ ánh sáng khả kiến mạnh nhất trong khoảng 400–600 nm. Trong số các xúc tác quang MesoTiO2−x−y C x N y -S, các chất xúc tác MesoTiO2−x−y C x N y -M cho thấy hoạt động xúc tác quang vượt trội trong việc tạo ra hydro trong dung dịch methanol dưới bức xạ ánh sáng khả kiến so với MesoTiO2−x−y C x N y -E, MesoTiO2−x−y C x N y -I, và TiO2 thương mại từ Degussa. Kết quả này có thể được quy cho lượng đồng pha C,N vừa phải trên kết cấu xốp phát triển của chúng (kích thước lỗ = 8.0 nm) và diện tích bề mặt cao (107 m2 g−1) của TiO2 (kích thước tinh thể = 9.9 nm) trong các chất xúc tác MesoTiO2−x−y C x N y -M.

Từ khóa

#TiO2 #đồng pha carbon và nitơ #quá trình tự tổ chức #xúc tác quang #năng lượng band gap #hoạt động tạo hydro

Tài liệu tham khảo

Chen X, Lou Y, Samia ACS, Burda C, Gole JL (2005) Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: Comparison to a commercial nanopowder. Adv Funct Mater 15:41–49. doi:10.1002/adfm.200400184 Chen DM, Jiang ZY, Geng JQ, Wang Q, Yang D (2007a) Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity. Ind Eng Chem Res 46:2741–2746. doi:10.1021/ie061491k Chen SY, Han CC, Tsai CH, Huang J, Chen-Yang YW (2007b) Effect of morphological properties of ionic liquid-templated mesoporous anatase TiO2 on performance of PEMFC with Nafion/TiO2 composite membrane at elevated temperature and low relative humidity. J Power Sources 171:363–372. doi:10.1016/j.jpowsour.2007.06.047 Chen DM, Jiang ZY, Geng JQ, Zhu JH, Yang D (2009) A facile method to synthesize nitrogen and fluorine co-doped TiO2 nanoparticles by pyrolysis of (NH4)2TiF6. J Nanoparticle Res 11:303–313. doi:10.1007/s11051-008-9383-2 Cong Y, Chen F, Zhang J, Anpo M (2006) Carbon and nitrogen-codoped TiO2 with high visible light photocatalytic activity. Chem Lett 35:800–801. doi:10.1246/cl.2006.800 Das SK, Bhunia MK, Sinha AK, Bhaumik A (2009) Self-assembled mesoporous zirconia and sulfated zirconia nanoparticles synthesized by triblock copolymer as template. J Phys Chem C 113:8918–8923. doi:10.1021/jp9014096 Das SK, Bhunia MK, Bhaumik A (2010) Self-assembled TiO2 nanoparticles: mesoporosity, optical and catalytic properties. Dalton Trans 39(2010):4382–4390. doi:10.1039/c000317d Dhananjeyan MR, Kandavelu V, Renganathan R (2000) A study on the photocatalytic reactions of TiO2 with certain pyrimidine bases: effects of dopants (Fe3+) and calcination. J Mol Catal A Chem 151:217–223. doi:10.1016/S1381-1169(99)00246-0 Ding Z, Lu GQ, Greenfield PF (2000) Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water. J Phys Chem B 104:4815–4820. doi:10.1021/jp993819b Dolat D, Quici N, Kusiak-Nejman E, Morawski AW, Puma GL (2012) One-step, hydrothermal synthesis of nitrogen, carbon co-doped titanium dioxide (N, C-TiO2) photocatalysts. Effect of alcohol degree and chain length as carbon dopant precursors on photocatalytic activity and catalyst deactivation. Appl Catal B Environ 115–116:81–89. doi:10.1016/j.apcatb.2011.12.007 Dupont J, Scholten JD (2010) On the structural and surface properties of transition-metal nanoparticles in ionic liquids. Chem Soc Rev 39:1780–1804. doi:10.1039/b822551f Etacheri V, Seery MK, Hinder SJ, Pillai SC (2010) Highly visible light active TiO2-xNx heterojunction photocatalysts. Chem Mater 22:3843–3853. doi:10.1021/cm903260f Han CC, Lin YP, Ho SY, Lai YC, Chen SY, Huang J, Chen-Yang YW (2010) Effect of ionic liquid-templated mesoporous anatase TiO2 on performance of dye-sensitized solar cell. J Phys D Appl Phys 43:035102. doi:10.1088/0022-3727/43/3/035102 Han CS, Andersen J, Likodimos V, Falaras P, Linkugel J, Dionysiou DD (2014) The effect of solvent in the sol-gel synthesis of visible light-activated, sulfur-doped TiO2 nanostructured porous films for water treatment. Catal Today 224:132–139. doi:10.1016/j.cattod.2013.11.052 Hojamberdiev M, Prasad RM, Morita K, Zhu YF, Schiavon M, Al Gurlo, Riedel R (2012) Template-free synthesis of polymer-derived mesoporous SiOC/TiO2 and SiOC/N-doped TiO2 ceramic composites for application in the removal of organic dyes from contaminated water. Appl Catal B Environ 115:303–313. doi:10.1016/j.apcatb.2011.12.036 Huang B, Wey MY (2013) Characterization of N-doped TiO2 nanoparticles supported on SrTiO3 via a sol-gel process. J Nanoparticle Res 16:2178. doi:10.1007/s11051-013-2178-0 Kim J, Kang M (2012) High photocatalytic hydrogen production over the band gap-tuned urchin-like Bi2S3-loaded TiO2 composites system. Int J Hydrogen Energy 37:8249–8256. doi:10.1016/j.ijhydene.2012.02.057 Li FT, Wang XJ, Zhao Y, Liu JX, Hao YJ, Liu RH, Zhao DS (2014) Ionic-liquid-assisted synthesis of high-visible-light-activated N-B-F-tri-doped mesoporous TiO2 via a microwave route. Appl Catal B Environ 144:442–453. doi:10.1016/j.apcatb.2013.07.050 Liu S-H, Syu H-R (2012) One-step fabrication of N-doped mesoporous TiO2 nanoparticles by self-assembly for photocatalytic water splitting under visible light. Appl Energy 100:148–154. doi:10.1016/j.apenergy.2012.03.063 Liu S-H, Syu H-R (2013) High visible-light photocatalytic hydrogen evolution of C, N-codoped mesoporous TiO2 nanoparticles prepared via an ionic-liquid template approach. Int J Hydrogen Energy 38:13856–13865. doi:10.1016/j.ijhydene.2013.08.094 Ma Z, Yu JH, Dai S (2010) Preparation of inorganic materials using ionic liquids. Adv Mater 22:261–285. doi:10.1002/adma.200900603 Manole AV, Dobromir M, Apetrei R, Nica V, Luca D (2014) Surface characterization of sputtered N:TiO2 thin films within a wide range of dopant concentration. Ceram Int 40:9989–9995. doi:10.1016/j.ceramint.2014.02.097 Martínez-Ferrero E, Sakatani Y, Boissière C, Grosso D, Fuertes A, Fraxedas J, Sanchez C (2007) Nanostructured titanium oxynitride porous thin films as efficient visible-active photocatalysts. Adv Funct Mater 17:3348–3354. doi:10.1002/adfm.200700396 Naik B, Martha S, Parida KM (2011) Facile fabrication of Bi2O3/TiO2-xNx nanocomposites for excellent visible light driven photocatalytic hydrogen evolution. Int J Hydrogen Energy 36:2794–2802. doi:10.1016/j.ijhydene.2010.11.104 Noguchi D, Kawamata Y, Nagatomo T (2005) The response of TiO2 photocatalysts codoped with nitrogen and carbon to visible light. J Electrochem Soc 152:D124–D129. doi:10.1149/1.1990581 Ould-Chikh S, Proux O, Afanasiev P, Khrouz L, Hedhili MN, Anjum DH, Harb M, Geantet C, Basset JM, Puzenat E (2014) Photocatalysis with chromium-doped TiO2: bulk and surface doping. ChemSusChem 7:1361–1371. doi:10.1002/cssc.201300922 Ouzzine M, Maciá-Agulló JA, Lillo-Ródenas MA, Quijada C, Linares-Solano A (2014) Synthesis of high surface area TiO2 nanoparticles by mild acid treatment with HCl or HI for photocatalytic propene oxidation. Appl Catal B Environ 154–155:285–293. doi:10.1016/j.apcatb.2014.02.039 Pan JH, Zhang XW, Du AJ, Sun DD, Leckie JO (2008) Self-etching reconstruction of hierarchically mesoporous F-TiO2 hollow microspherical photocatalyst for concurrent membrane water purifications. J Am Chem Soc 130:11256–11257. doi:10.1021/ja803582m Parker JC, Siegel RW (1990) Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO2. Appl Phys Lett 57:943–945 Ruzybayev I, Shah SI (2014) The role of oxygen pressure in nitrogen and carbon co-doped TiO2 thin films prepared by pulsed laser deposition method. Surf Coat Technol 241:148–153. doi:10.1016/j.surfcoat.2013.10.073 Sajjad S, Leghari SAK, Zhang JL (2013) Copper impregnated ionic liquid assisted mesoporous titania: visible light photocatalyst. RSC Adv 3:12678–12687. doi:10.1039/c3ra23347b Scarisoreanu M, Morjan I, Alexandrescu R, Fleaca CT, Badoi A, Dutu E, Niculescu A-M, Luculescu C, Vasile E, Wang J, Bouhadoun S, Herlin-Boime N (2014) Enhancing the visible light absorption of titania nanoparticles by S and C doping in a single-step process. Appl Surf Sci 4:5880–5886. doi:10.1016/j.apsusc.2014.01.135 Sivaranjani K, Gopinath CS (2011) Porosity driven photocatalytic activity of wormhole mesoporous TiO2-xNx in direct sunlight. J Mater Chem 21:2639–2647. doi:10.1039/c0jm03825c Song JJ, Zhu BL, Zhao WL, Hu XJ, Shi YK, Huang WP (2013) Characterization and photocatalytic properties of Ru, C co-modified one-dimensional TiO2-based composites prepared via a single precursor approach. J Nanopart Res 15:1494. doi:10.1007/s11051-013-1494-8 Soni SS, Henderson MJ, Bardeau JF, Gibaud A (2008) Visible-light photocatalysis in titania-based mesoporous thin films. Adv Mater 20:1493–1498. doi:10.1002/adma.200701066 Tian HJ, Hu LH, Zhang CN, Liu WQ, Huang Y, Mo L, Guo L, Sheng J, Dai SY (2010) Retarded charge recombination in dye-sensitized nitrogen-doped TiO2 solar cells. J Phys Chem C 114:1627–1632. doi:10.1021/jp9103646 Todorova N, Vaimakis T, Petrakis D, Hishita S, Boukos N, Giannakopoulou T, Giannouri M, Antiohos S, Papageorgiou D, Chaniotakis E, Trapalis C (2013) N and N, S-doped TiO2 photocatalysts and their activity in NOx oxidation. Catal Today 209:41–46. doi:10.1016/j.cattod.2012.11.019 Umadevi M, Parimaladevi R, Sangari M (2014) Synthesis, characterization and photocatalytic activity of fluorine doped TiO2 nanoflakes synthesized using solid state reaction method. Spectrochim Acta A 120:365–369. doi:10.1016/j.saa.2013.10.046 Venieri D, Fraggedaki A, Kostadima M, Chatzisymeon E, Binas V, Zachopoulos A, Kiriakidis G, Mantzavinos D (2014) Solar light and metal-doped TiO2 to eliminate water-transmitted bacterial pathogens: Photocatalyst characterization and disinfection performance. Appl Catal B Environ 154:93–101. doi:10.1016/j.apcatb.2011.12.007 Vereb G, Manczinger L, Oszko A, Sienkiewicz A, Forro L, Mogyorosi K, Dombi A, Hernadi K (2013) Highly efficient bacteria inactivation and phenol degradation by visible light irradiated iodine doped TiO2. Appl Catal B Environ 129:194–201. doi:10.1016/j.apcatb.2012.08.037 Wang XP, Lim TT (2011) Effect of hexamethylenetetramine on the visible-light photocatalytic activity of C-N codoped TiO2 for bisphenol A degradation: evaluation of photocatalytic mechanism and solution toxicity. Appl Catal A Gen 399:233–241. doi:10.1016/j.apcata.2011.04.002 Wang Q, Jiang ZY, Wang YB, Chen DM, Yang D (2009) Photocatalytic properties of porous C-doped TiO2 and Ag/C-doped TiO2 nanomaterials by eggshell membrane templating. J Nanoparticle Res 11:375–384. doi:10.1007/s11051-008-9390-3 Wang DH, Jia L, Wu XL, Lu LQ, Xu AW (2012) One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity. Nanoscale 4:576–584. doi:10.1039/c1nr11353d Wu Y-C, Ju L-S (2014) Annealing-free synthesis of C-N co-doped TiO2 hierarchical spheres by using amine agents via microwave-assisted solvothermal method and their photocatalytic activities. J Alloys Compd 604:164–170. doi:10.1016/j.jallcom.2014.03.023 Xu QC, Wellia DV, Amal R, Liao DW, Loo JSC, Tan TTY (2010) Superhydrophilicity-assisted preparation of transparent and visible light activated N-doped titania film. Nanoscale 2:1122–1127. doi:10.1039/c0nr00105h Xu QC, Wellia DV, Yan S, Liao DW, Lim TM, Tan TTY (2011) Enhanced photocatalytic activity of C-N-codoped TiO2 films prepared via an organic-free approach. J Hazar Mater 188:172–180. doi:10.1016/j.jhazmat.2011.01.088 Yang X, Cao C, Erickson L, Hohn K, Maghirang R, Klabunde K (2008) Synthesis of visible-light-active TiO2-based photocatalysts by carbon and nitrogen doping. J Catal 260:128–133. doi:10.1016/j.jcat.2008.09.016 Yang GD, Jiang Z, Shi HH, Xiao TC, Yan ZF (2010) Preparation of highly visible-light active N-doped TiO2 photocatalyst. J Mater Chem 20:5301–5309. doi:10.1039/c0jm00376j Yin S, Komatsu M, Zhang Q, Saito F, Sato T (2007) Synthesis of visible-light responsive nitrogen/carbon doped titania photocatalyst by mechanochemical doping. J Mater Sci 42:2399–2404. doi:10.1007/s10853-006-1231-0 Zhang SJ, Song LM (2009) Preparation of visible-light-active carbon and nitrogen codoped titanium dioxide photocatalysts with the assistance of aniline. Catal Commun 10:1725–1729. doi:10.1016/j.catcom.2009.05.017 Zhang K, Wang XD, Guo XL, He TO, Feng YM (2014) Preparation of highly visible light active Fe-N co-doped mesoporous TiO2 photocatalyst by fast sol-gel method. J Nanopart Res 16:2246. doi:10.1007/s11051-014-2246-0 Zhao L, Chen XF, Wang XC, Zhang YJ, Wei W, Sun YH, Antonietti M, Titirici MM (2010) One-step solvothermal synthesis of a carbon@TiO2 dyade structure effectively promoting visible-light photocatalysis. Adv Mater 22:3317–3321. doi:10.1002/adma.201000660