Albumin permeability and electrical resistance as means of assessing endothelial monolayer integrity in vitro
Tóm tắt
Từ khóa
Tài liệu tham khảo
Albeda, S. M.; Sampson, P. M.; Haselton, F. R., et al. Permeability characteristics of cultured endothelial cell monolayers. J. Appl. Physiol. 64:308–322; 1988.
Cereijido, M.; Meza, I.; Martinez-Palomo, A. Occluding junctions in cultured epithelial monolayers. Am. J. Physiol. 240:C96-C102; 1981.
Davies, P. F. Quantitative aspects of endocytosis in cultured endothelial cells. In: Jaffe, E. A., ed. Biology of endothelial cells. Boston: Nijhfoft 1984:365–376.
Dull, R. O.; Jo, H.; Sill, H., et al. The effect of varying albumin concentration and hydrostatic pressure on hydraulic conductivity and albumin permeability of cultured endothelial monolayers. Microvasc. Res. 41:390–407; 1991.
Garcia, J. G. N.; Siflinger-Birnheim, A.; Bizios, R., et al. Thrombin-induced increases in albumin permeability across the endothelium. J. Cell. Physiol. 128:96–104; 1986.
Hennig, B.; Shaby, M. D.; Fulton, A. B., et al. Exposure to free fatty acid increases the transfer of albumin across cultured endothelial monolayers. Arteriosclerosis 4:489–497; 1984.
Jo, H.; Dull, R. O.; Hollis, T. M., et al. Endothelial albumin permeability is shear-dependent, time-dependent and reversible. Am. J. Physiol. H29:H1991–1996; 1991.
Katora, M.; Hollis, T. M. A simple fluorescent method for quantitative determination of aortic protein uptake. J. Appl. Physiol. 39:145–149; 1975.
Lin, S. J.; Jan, K. M.; Schuessler, G., et al. Enhanced macromolecular permeability of aortic endothelial cells in association with mitosis. Atherosclerosis 73:223–232; 1988.
Lin, S. J.; Jan, K. M.; Schuessler, G., et al. Transendothelial transport of low density lipoprotein in association with cell mitosis in rat aorta. Arteriosclerosis 9:230–236; 1989.
Nairn, R. C. Fluorescent protein tracing. London: E. & S. Livingston Ltd; 1962.
Navab, M.; Hough, G. P.; Berliner, J. A., et al. Rabbit beta-migrating very low density lipoprotein increases endothelial macromolecular transport without altering electrical resistance. J. Clin. Invest. 78:389–397; 1986.
O'Donnell, M. P.; Vargas, F. F. Electrical conductivity and its use in estimating equivalent pore size for arterial endothelium. Am. J. Physiol. 19:H16-H21; 1986.
Postlewaite, A. E.; Snyderman, R.; Kang, H. G. The chemotactic attraction of human fibroblasts to lymphocyte-derived factor. J. Exp. Med. 144:1188–1203; 1976.
Renkin, E. M.; Curry, F. E. Transport of water and solutes across capillary endothelium. In: Giebisch, B.; Toteson, D. C.; Ussing, H. H., eds. Membrane transport in biology. Berlin: Springer-Verlag; 1979:chapter 1.
Ryan, T. A.; Joiner, B. L., editors. Minitab student handbook. Boston MA: Duxbury Press; 1976.
Territo, M.; Berliner, J. A.; Fogelman, A. M. Effect of monocyte migration on low density lipoprotein transport across aortic endothelial cell monolayers. J. Clin. Invest. 74:2279–2284; 1984.
Truskey, G. A.; Colton, C. K.; Smith, K. A. Quantitative analysis of protein transport in the arterial wall. In: Schwartz, C. J.; Werthessen, J. T.; Wolf, S., eds. Structure and function of the circulation, vol. 3. New York: Plenum Publishing Co.; 1981:187.