Al doping effect on optoelectronic and thermoelectric properties of h-ZnS monolayer: a DFT approach
Tóm tắt
Al-doped hexagonal ZnS monolayer (h-ZnS-2D) at different concentrations is adopted by using Density Functional Theory (DFT) to show the effect of Al doping on the optoelectronic and thermoelectric performances of h-ZnS-2D. The optimized cells give planar structures with small decrease of the lattice parameter and a n-type conductivity with a direct band gap, which increasing with Al content. An improvement of absorption and reflectivity and a decrease in transmittance are observed with doping in the visible and IR ranges. The thermoelectric properties showed a negative Seebeck coefficient justifying the n-type conduction and an enhancement of electrical conductivity and power factor for an optimum Al concentration of 12.5%. At high Al content, the formation of additional insulating phase of Al2S3 explains the degradation of the properties. This study opens the way to use these doped monolayers as a potential candidate in the optoelectronic applications and for thermoelectric power generation.
Tài liệu tham khảo
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 5696 (2004). https://doi.org/10.1126/science.1102896
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 7065 (2005). https://doi.org/10.1038/nature04233
A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007). https://doi.org/10.1038/nmat1849
Min Seok Jang, Hyungjun Kim, Young-Woo Son, Harry A. Atwater, and William A. Goddard III, PNAS 110 (22) 8786–8789 (2013), https://doi.org/10.1073/pnas.1305416110
T. Antonio, Soukiassian Patrick G. J. Phys. Appl. Phys. 47(9), 090201 (2014). https://doi.org/10.1088/0022-3727/47/9/090201
B. Hunt, J. D. Sanchez-Yamagishi1, A. F. Young, M. Yankowitz, B. J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, R. C. Ashoori. Science. 340(6139), 1427–1430 (2013). doi: https://doi.org/10.1126/science.1237240
V.P. Gusynin, S.G. Sharapov, Phys. Rev. Lett. 95, 146801 (2005). https://doi.org/10.1103/PhysRevLett.95.146801
K.F. Mak, L. Ju, F. Wang, T.F. Heinz, Solid State Commun. 152, 193 (2012). https://doi.org/10.1016/j.ssc.2012.04.064
S. Ayaz Khan, S. Azam, M. Benali Kanoun, G. Murtaza, M. Rani, S. Goumri-Said, Tailoring the electronic structure and optical properties of cadmium-doped zinc oxides nanosheet. Cogent Phys. 4, 1391734 (2017). https://doi.org/10.1080/23311940.2017.1391734
Sesha Vempati, Joy Mitra and Paul Dawson, Nanoscale Research Letters, 7:470 (2012). DOI : http://www.nanoscalereslett.com/content/7/1/470
M.H. Mohammed, F.H. Hanoon, Inorg. Chem. Commun. 127, 108522 (2021). https://doi.org/10.1016/j.inoche.2021.108522
M.H. Mohammed, F.H. Hanoon, Phys. Low-dimensional Syst. Nanostructures 124, 114384 (2020). https://doi.org/10.1021/acsomega.8b01041
S.-J. Young, Y.-H. Liu, J.-T. Chien, ACS Omega 3, 8135–8140 (2018). https://doi.org/10.1021/acsomega.8b01041
Xiaojun Wu, Yong Pei, and Xiao Cheng Zeng, Nano Lett. 9, 4, 1577–1582 (2009). DOI: https://doi.org/10.1021/nl803758s
S. Butler, Z and al. ACS Nano 7(4), 2898–2926 (2013). https://doi.org/10.1021/nn400280c
A.K.M. Newaz, D. Prasai, J.I. Ziegler, D. Caudel, S. Robinson, R.F. Haglund, K.I. Bolotin, Electrical control of optical properties of monolayer MoS2. Solid State Commun. 155, 49 (2013). https://doi.org/10.1016/j.ssc.2012.11.010
H. Lashgari, M.R. Abolhassani, A. Boochani, S.M. Elahi, J. Khodadadi, Solid State Commun. 195, 61 (2014). https://doi.org/10.1016/j.ssc.2014.06.008
M. Sharma et al., Appl. Phys. 116, 063711 (2014). https://doi.org/10.1063/1.4892798
L.X. Shao, K.H. Chang, H.L. Hwang, Appl. Surf. Sci 212, 0169–4332 (2003). https://doi.org/10.1016/S0169-4332(03)00085-0
A. Es-Smairi, N. Fazouan, E.H. Atmani, Mater. Res. Express 6, 125047 (2019). https://doi.org/10.1088/2053-1591/ab56fa
A. Es-Smairi, N. Fazouan, I. Bziz, E. H. Atmani, IEEE Xplore, 978–1–7281–1182–7/18 (2018). DOI: https://doi.org/10.1109/IRSEC.2018.8702895
M. Khuili, G. El Hallani, N. Fazouan, H. Abou El Makarim, E.H. Atmani, Comput. Condens. Matter 21, e00426 (2019). https://doi.org/10.1016/j.cocom.2019.e00426
M. Kitagawa, Y. Tomomura, K. Nakanishi, A. Suzuki, S. Nakajima, J. Cryst. Growth 101, 52–55 (1990). https://doi.org/10.1016/0022-0248(90)90935-E
P. Li, S. Deng, L. Zhang, Y. Li, J. Yu, D. Liu, Chin. J. Chem. Phys. 23, 5 (2010). https://doi.org/10.1088/1674-0068/23/05/527-532
A. Faghaninia, K.R. Bhatt, C.S. Lo, Phys. Chem. Chem. Phys. 18, 22628–22635 (2016). https://doi.org/10.1039/C6CP01278G
H. Lashgari, A. Boochani, A. Shekaari, S. Solaymani, E. Sartipi, R.T. Mendi, Appl. Surf. Sci. 369, 76 (2016). https://doi.org/10.1016/j.apsusc.2016.02.042
Rajneesh Chaurasiya and Ambesh Dixit, Interantional Workshop on The Physics of Semiconductor Devices (IWPSD 2017). http://arXiv.org/abs/1710.11051 [cond-mat.mtrl-sci] (2017)
M. Jafari, K. Alvani, Mater. Res. Express 6, 8 (2019). https://doi.org/10.1088/2053-1591/ab24f9/meta
D.D. Koelling, B.N. Harmon, Solid State Physics 10, 16 (1977). https://doi.org/10.1088/0022-3719/10/16/019
P. Hohenberg, Kohn W 136, B864 (1964). https://doi.org/10.1103/PhysRev.136.B864
L.J. Sham, W. Kohn, Phys Rev 145, 561 (1966). https://doi.org/10.1103/PhysRev.145.561
J.P. Perdew et al., Phys. Rev. Lett 100, 136406 (2008). https://doi.org/10.1103/PhysRevLett.100.136406
J.P. Perdew, K. Burke, M. Ernzerhof, Phys Rev Lett 78, 1396 (1997). https://doi.org/10.1103/PhysRevLett.77.3865
J.P. Perdew, Y. Wang, Phys. Rev B 45, 13244 (1992). https://doi.org/10.1103/PhysRevB.45.13244
F. Tran, P. Blaha, Phys Rev Lett. 102, 226401 (2009). https://doi.org/10.1103/PhysRevLett.102.226401
D. Saikia, R.D. Raland, J.P. Borah, Phys. E. 83, 56 (2016). https://doi.org/10.1016/j.physe.2016.04.016
A. Jrad, W. Naffouti, Tarek ben nasr, turki-kamoun najoua. J. Lumin. 173, 135–140 (2016). https://doi.org/10.1016/j.jlumin.2016.01.016
K. Momma, F. Izumi, J. Appl. Cryst. 44, 1272–1276 (2011). https://doi.org/10.1107/S0021889811038970
S. Sperinck, T. Becker, K. Wright, W.R. Richmond, J Incl Phenom Macrocycl Chem 65, 89–95 (2009). https://doi.org/10.1007/s10847-009-9610-1
X.-S. Fang, C.-H. Ye, X.-S. Peng, Y.-H. Wang, Yu-ChengWu, Li-De Zhang. J. Cryst. Growth 263(1–4), 263–268 (2004). https://doi.org/10.1016/j.jcrysgro.2003.11.056
I. Yoon, C.-D. Kim, B.-K. Min, Y.-K. Kim, B. Kim, W.-S. Jung, Bull. Korean Chem. Soc. 30(12), 3045 (2009). https://doi.org/10.5012/bkcs.2009.30.12.3045
P. Prathap, N. Revathi, Y.P.V. Subbaiah, K.T. Ramakrishna Reddy, R.W. Miles. Solid State Sciences. 11, 224–232 (2009). https://doi.org/10.1016/j.solidstatesciences.2008.04.020
J. Sun, H. Wang, J. He, Y. Tian, Phys. Rev. B. 71, 125132 (2005). https://doi.org/10.1103/PhysRevB.71.125132
F. Wooten, Am. J. Phys. 41, 939 (1973). https://doi.org/10.1119/1.19874341972
H. Min, A.H. MacDonald, Phys. Rev. Lett. 103, 067402 (2009). https://doi.org/10.1103/PhysRevLett.103.067402
A.B. Kuzmenko, E. van Heumen, Phys. Rev. lett 100, 117401 (2008). https://doi.org/10.1103/PhysRevLett.103.067402
A. Azmand, H. Kafashan, J. Alloy. Compd. 779, 301–313 (2019). https://doi.org/10.1016/j.jallcom.2018.11.268
Bo. Long, S. Cheng, H. Zhou, J. Liao, H. Zhang, H. Jia, H. Li, ECS Solid State Lett. 3(11), P140–P143 (2014). https://doi.org/10.1149/2.0041411ssl
J. Liao, S. Cheng, H. Zhou, B. Long, Micro & Nano Letters 8, 4 (2013). https://doi.org/10.1049/mnl.2013.0039
J. Kuhs, Z. Hens, C. Detavernier, Vacuum Sci. Technol. 36, 01A113 (2018). https://doi.org/10.1116/1.5003339
K. Nagamani, P. Prathap, Y. Lingappa, R.W. Miles, K.T.R. Reddy, Phys. Procedia 25, 137–142 (2012). https://doi.org/10.1016/j.phpro.2012.03.062
C. Gayner, K.K. Kar, Prog. Mater. Sci. 83, 330–382 (2016). https://doi.org/10.1016/j.pmatsci.2016.07.002
G. Zhang, Y.-W. Zhang, J. Mater. Chem. C 5(31), 7684–7698 (2017). https://doi.org/10.1039/c7tc01088e
D. Li, C. Luo, Y. Chen, D. Feng, Y. Gong, C. Pan, J. He, ACS Appl. Energy Mater. 2(4), 2427–2434 (2019). https://doi.org/10.1021/acsaem.9b00334
J. Bera, S. Sahu, RSC Adv. 9, 25216 (2019). https://doi.org/10.1039/c9ra04470a
A. Betal, J. Bera, S. Sahu, Comput. Mater. Sci. 186, 109977 (2021). https://doi.org/10.1016/j.commatsci.2020.109977
G.K.H. Madsen et al., Comput. Phys. Commun. 175, 67–71 (2006). https://doi.org/10.1016/j.cpc.2006.03.007
K. Schwarz, P. Blaha, G.K.H. Madsen, Phys Commun 147, 71–76 (2002). https://doi.org/10.1016/S0010-4655(02)00206-0
Mahan G D and Sofo J O, Proc Natl Acad Sci USA. 93 (1996). DOI :https://doi.org/10.1073/pnas.93.15.7436
T.J. Scheidementel, C.A. Draxl, T. Thoonhauser, J.V. Badding, J. Sofo, Phys. Rev. B 68, 125210 (2003). https://doi.org/10.1103/PhysRevB.68.125210
Masahiko KITAGAWA, Yoshitaka TOMOMURA, Akira SUZUKI and Shigeo NAKAJIMA. J. Crystal Growth. 95, 509–511 (1989). https://doi.org/10.1016/0022-0248(89)90454-5
L. Wang, Z. Zhang, L. Geng, T. Yuan, Y. Liu et al., Energy Environ. Sci. 11(5), 1307–1317 (2018). https://doi.org/10.1039/c7ee03617e
Y. Xu, X. Li, L. Qian, Phys. Solid State 62(11), 2052–2057 (2020). https://doi.org/10.1134/S1063783420110402
K. Hippalgaonkar, Yu. Ying Wang, D.Y. Ye, H.Z. Qiu, Y. Wang, J. Moore, S.G. Louie, X. Zhang, Phys. Rev. B 95, 115407 (2017). https://doi.org/10.1103/PhysRevB.95.115407
G. Snyder, E. Toberer, Nat. Mater. 7, 105–114 (2008). https://doi.org/10.1038/nmat2090
Chang C., Wu M., He D., Pei Y., Wu C.-F., Wu X., Yu H., Zhu F., Wang K., Chen Y., Huang L., Li J.- F., He J., Zhao L.-D. Science. 360, 778–783 (2018). DOI:https://doi.org/10.1126/science.aaq1479
M. Wolf, R. Hinterding, A. Feldhoff, Entropy 21, 1058 (2019). https://doi.org/10.3390/e21111058
Fu. Tiezheng, X. Yue, Wu. Haijun, Fu. Chenguang, T. Zhu, X. Liu, Hu. Lipeng, P. Ying, J. He, X. Zhao, J. Materiomics 2(2), 141–149 (2016). https://doi.org/10.1016/j.jmat.2016.05.005
Wu. Yixuan, W. Li, A. Faghaninia, Z. Chen, J. Li, X. Zhang, Bo. Gao, S. Lin, B. Zhou, A. Jain, Y. Pei, Mater. Today Phys. 3, 127–136 (2017). https://doi.org/10.1016/j.mtphys.2017.10.001