Airway mucus in cystic fibrosis

Paediatric Respiratory Reviews - Tập 3 - Trang 115-119 - 2002
Edith Puchelle1, Odile Bajolet1, Michel Abély1
1UMRS 514 INSERM, IFR 53, Hôpital Maison Blanche, 45, rue Cognacq Jay, 51092 Reims Cedex, France

Tài liệu tham khảo

Phillips, 1999, Bidirectional transepithelial water transport: measurement and governing mechanisms, Biophys. J., 76, 869, 10.1016/S0006-3495(99)77250-4 Wine, 1999, The genesis of cystic fibrosis lung disease, J. Clin. Invest., 103, 309, 10.1172/JCI6222 Smith, 1996, Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid, Cell, 85, 229, 10.1016/S0092-8674(00)81099-5 Ballard, 1999, CFTR involvement in chloride, bicarbonate and liquid secretion by airway submucosal glands, Am. J. Physiol., 277, L694 Matsui, 2000, Osmotic water permeabilities of cultured, well-differentiated normal and cystic fibrosis airway epithelia, J. Clin. Invest., 105, 1419, 10.1172/JCI4546 Boucher, 1986, Na+ transport in cystic fibrosis respiratory epithelia. Abnormal basal rate and response to adenylate cyclase activation, J. Clin. Invest., 78, 1245, 10.1172/JCI112708 Verkman, 2001, Lung disease in cystic fibrosis: is airway surface liquid composition abnormal?, Am. J. Physiol. Lung Cell Mol. Physiol., 281, L306, 10.1152/ajplung.2001.281.2.L306 Zahm, 2001, X-ray microanalysis of airway surface liquid collected in cystic fibrosis mice, Am. J. Physiol. Lung Cell Mol. Physiol., 281, L309, 10.1152/ajplung.2001.281.2.L309 Tarran, 2001, The CF salt controversy: in vivo observations and therapeutic approaches, Mol. Cell, 8, 149, 10.1016/S1097-2765(01)00286-6 Zahm, 1997, Early alterations in airway mucociliary clearance and inflammation of the lamina propria in CF mice, Am. J. Physiol., 272, L853, 10.1152/ajpcell.1997.272.3.C853 Bryan, 1998, Overproduction of the CFTR R domain leads to increased levels of asialoGM1 and increased Pseudomonas aeruginosa binding by epithelial cells, Am. J. Respir. Cell Mol. Biol., 19, 269, 10.1165/ajrcmb.19.2.2889 Crouch, 1999, Modulation of host-bacterial interactions by collectins, Am. J. Respir. Cell Mol. Biol., 21, 558, 10.1165/ajrcmb.21.5.f169 Bals, 1999, Augmentation of innate host defence by expression of a cathelicidin antimicrobial peptide, Infect. Immun., 67, 6084, 10.1128/IAI.67.11.6084-6089.1999 Bals, 1998, Mouse beta-defensin 1 is a salt-sensitive antimicrobial peptide present in epithelia of the lung and urogenital tract, Infect. Immun., 66, 1225, 10.1128/IAI.66.3.1225-1232.1998 Bals, 2001, Salt-independent abnormality of antimicrobial activity in cystic fibrosis airway surface fluid, Am. J. Respir. Cell Mol. Biol., 25, 21, 10.1165/ajrcmb.25.1.4436 Ferkol, 2001, Chinks in the armor of the airway, Am. J. Respir. Cell Mol. Biol., 25, 11, 10.1165/ajrcmb.25.1.f212 Gao, 1999, Abnormal glutathione transport in cystic fibrosis airway epithelia, Am. J. Physiol. Lung Cell Mol. Physiol., 277, L113, 10.1152/ajplung.1999.277.1.L113 Davies, 1999, Identification of MUC5B, MUC5AC and small amounts of MUC2 mucins in cystic fibrosis airway secretions, Biochem. J., 344, 321, 10.1042/0264-6021:3440321 Thornton, 1991, Mucus glycoproteins from cystic fibrosis sputum, Biochem. J., 276, 667, 10.1042/bj2760667 Zhang, 1995, Genotypic analysis of respiratory mucous sulfation defects in cystic fibrosis, J. Clin. Invest., 96, 2997, 10.1172/JCI118372 Davril, 1999, The sialylation of bronchial mucins secreted by patients suffering from cystic fibrosis or from chronic bronchitis is related to the severity of airway infection, Glycobiology, 9, 311, 10.1093/glycob/9.3.311 Scharfman, 2000, Sialyl-Le(x) and sulfo-sialyl-Le(x) determinants are receptors for P. aeruginosa, Glycoconj. J., 17, 735, 10.1023/A:1011091112884 Li, 1998, Activation of NF-κB via a Src-dependent Ras-MAPK-pp 90 rsk pathway is required for Pseudomonas aeruginosa-induced mucin overproduction in epithelial cells, Proc. Natl. Acad. Sci. USA, 95, 5718, 10.1073/pnas.95.10.5718 Girod, 1999, Role of the physicochemical properties of mucus in the protection of the respiratory epithelium, Eur. Respir. J., 13, 22 Tirouvanziam, 1998, Bioelectric properties of human cystic fibrosis and non-cystic fibrosis fetal tracheal xenografts in SCID mice, Am. J. Physiol., 274, C875, 10.1152/ajpcell.1998.274.4.C875 Zahm, 1995, Dose-dependent in vitro effect of recombinant human DNase on rheological and transport properties of cystic fibrosis respiratory mucus, Eur. Respir. J., 8, 381, 10.1183/09031936.95.08030381 Vasconcellos, 1994, Reduction in viscosity of cystic fibrosis sputum in vitro by gelsolin, Science, 263, 969, 10.1126/science.8310295 Galabert, 1987, Relationships between the lipid content and the rheological properties of airway secretions in cystic fibrosis, Clin. Chim. Acta, 164, 139, 10.1016/0009-8981(87)90065-9 Girod, 1991, Role of phospholipid lining on respiratory mucus clearance by cough, J. Appl. Physiol., 71, 2262, 10.1152/jappl.1991.71.6.2262 Griese, 1997, Tracheobronchial surface active material in cystic fibrosis, Eur. J. Med. Res., 24, 114 Zahm, 1998, Improvement of cystic fibrosis airway mucus transportability by recombinant human DNase is related to changes in phospholipid profile, Am. J. Respir. Crit. Care Med., 157, 1779, 10.1164/ajrccm.157.6.9706036 Cowley, 2000, Airway surface liquid composition in mice, Am. J. Physiol. Lung Cell. Mol. Physiol., 278, L1213, 10.1152/ajplung.2000.278.6.L1213 Peault, 1994, Gene transfer to human fetal pulmonary tissue developed in immunodeficient SCID mice, Hum. Gene Ther., 5, 1131, 10.1089/hum.1994.5.9-1131 Baconnais, 1999, Ion composition and rheology of airway liquid from cystic fibrosis fetal tracheal xenografts, Am. J. Respir. Cell Mol. Biol., 20, 605, 10.1165/ajrcmb.20.4.3264 Dupuit, 2000, Differentiated and functional human airway epithelium regeneration in tracheal xenografts, Am. J. Physiol. Lung Cell Mol. Physiol., 278, L165, 10.1152/ajplung.2000.278.1.L165 Tirouvanziam, 2000, Inflammation and infection in naive human cystic fibrosis airway grafts, Am. J. Respir. Cell Mol. Biol., 23, 121, 10.1165/ajrcmb.23.2.4214