Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Mô hình và hiệu suất luồng không khí của thông gió gắn cho hai loại không gian nhỏ
Tóm tắt
Với sự xuất hiện của các trạm gác đô thị và khách sạn dạng capsule, sự phát triển của các không gian nhỏ với khái niệm về không gian tối thiểu hợp lý đã thu hút sự chú ý rộng rãi từ xã hội. Chế độ thông gió phù hợp với các đặc điểm hình học hạn chế của không gian nhỏ đáng được khám phá. Kết hợp với các yêu cầu thông gió tương ứng của hai loại không gian nhỏ, tức là không gian trạm gác và không gian ngủ nhỏ, bài báo này đề xuất hai chế độ thông gió gắn liền. Một cabin thí nghiệm toàn quy mô đã được thiết lập, và phương pháp mô phỏng đã được tối ưu hóa thông qua dữ liệu thực nghiệm. Mô hình luồng không khí và hiệu suất phân bố của hai chế độ thông gió gắn liền trong hai loại không gian nhỏ được nghiên cứu bằng phương pháp CFD. Kết quả cho thấy luồng không khí gắn liền với tường đứng có thể tạo thành một màn không khí ở các cửa sổ của không gian trạm gác, nhưng có một hiện tượng rò rỉ không khí. Việc lắp đặt tấm phản xạ có thể cải thiện tính toàn vẹn của màn không khí, và góc lắp đặt tốt nhất của tấm phản xạ là 60 độ. Chế độ thông gió gắn liền hai bên trong không gian ngủ nhỏ không chỉ có thể giảm bớt cảm giác gió lùa của người sử dụng (DR < 15%), mà còn cung cấp không khí tươi mới đến khu vực chiếm dụng (thời gian thông gió khu vực hít thở MAA < 92 giây). Những kết luận nghiên cứu sẽ thêm những ý tưởng mới về sự đa dạng của các chế độ thông gió trong các không gian nhỏ.
Từ khóa
#thông gió #không gian nhỏ #luồng không khí #mô hình CFD #cabin thí nghiệmTài liệu tham khảo
ASHRAE (2017). ANSI/ASHRAE Standard 55: Thermal Environmental Conditions for Human Occupancy. Atlanta: American Society of Heating, Refrigerating, and Air-conditioning Engineers.
Awbi HB (1991). Ventilation of Buildings. London: Routledge.
Boscoianu M, Prisecariu V, Cîrciu I (2010). Applications and computational aspects regarding the Coanda effect. Science & Military Journal, 5: 26–30.
Canha N, Lage J, Candeias S, et al. (2017). Indoor air quality during sleep under different ventilation patterns. Atmospheric Pollution Research, 8: 1132–1142.
Cao G, Ruponen M, Kurnitski J (2010). Experimental investigation of the velocity distribution of the attached plane jet after impingement with the corner in a high room. Energy and Buildings, 42: 935–944.
Cao G, Awbi H, Yao R, et al. (2014). A review of the performance of different ventilation and airflow distribution systems in buildings. Building and Environment, 73: 171–186.
Chen Q (1995). Comparison of different k—ε models for indoor air flow computations. Numerical Heat Transfer, Part B: Fundamentals, 28: 353–369.
Chen Q, Srebric J (2002). A procedure for verification, validation, and reporting of indoor environment CFD analyses. HVAC&R Research, 8: 201–216.
Chen C, Zhao B, Yang X (2011). Preventing the entry of outdoor particles with the indoor positive pressure control method: Analysis of influencing factors and cost. Building and Environment, 46: 1167–1173.
Chiang C (2018). Influences of price, service convenience, and social service scape on post-purchase process of capsule hotels. Asia Pacific Journal of Tourism Research, 23: 373–384.
Cho Y, Awbi HB, Karimipanah T (2008). Theoretical and experimental investigation of wall confluent jets ventilation and comparison with wall displacement ventilation. Building and Environment, 43: 1091–1100.
Coanda H (1936). Device for deflecting a stream of elastic fluid projected into an elastic fluid. US Patent, US1736135A, 1936-9-1.
Cole SE, Heber AJ, Murphy JP (1988). Benefits of deflector for ventilation fans in direct winds. American Society of Agricultural Engineers (Microfiche collection) (USA), Issue: fiche88–4536, 25.
Du J, Chan M, Pan D, et al. (2017). A numerical study on the effects of design/operating parameters of the radiant panel in a radiation-based task air conditioning system on indoor thermal comfort and energy saving for a sleeping environment. Energy and Buildings, 151: 250–262.
Fan J, Wu L, Zhang F, et al. (2018). Evaluating the effect of air pollution on global and diffuse solar radiation prediction using support vector machine modeling based on sunshine duration and air temperature. Renewable and Sustainable Energy Reviews, 94: 732–747.
Fragkou D, Stevenson E V (2012). Study of Beehive and its potential “biomimicry” application on capsule hotels in Tokyo, Japan. In: Proceedings of the 2nd Conference of People and Buildings, London, UK.
ISO (2005). BS EN ISO 7730–2005: Ergonomics of the Thermal Environment-Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria. Geneva: International Organization for Standardization.
Jablonska J, Tarczewski R, Trocka-Leszczynska E (2017). Ergonomic Solutions in Capsule Hotels? In: Proceedings of the International Conference on Applied Human Factors and Ergonomics, Los Angeles, USA.
Karimipanah T, Awbi HB (2002). Theoretical and experimental investigation of impinging jet ventilation and comparison with wall displacement ventilation. Building and Environment, 37: 1329–1342.
Lan L, Lian Z, Zhou X, et al. (2013). Pilot study on the application of bedside personalized ventilation to sleeping people. Building and Environment, 67: 160–166.
Lee WS, Lee JK, Moon J (2018). Study on the preference for capsule hotel attributes using a choice experiment. Tourism Economics, 24: 492–499.
Lemy DM, Heidi E (2019). The potential of capsule hotel service in Semarang. E-Journal of Tourism, 196.
Li D, Li X, Yang X, et al. (2003). Total air age in the room ventilated by multiple air-handling units: Part 1: An algorithm. ASHRAE Transactions, 109: 829–836.
Li A, Yi H, Zhang W (2012). A novel air distribution method— Principles of air curtain ventilation. International Journal of Ventilation, 10: 383–390.
Li A, Li M (2016). Research on the effectiveness of air curtain ventilation air distribution for small micro-space. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 48: 115–121. (in Chinese)
Li A, Liu W, Yao C, et al. (2016). CFD and the experimental study of air distribution in the breathing zone based on air curtain ventilation with deflector. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 48: 738–744.
Li A (2019). Extended Coanda Effect and attachment ventilation. Indoor and Built Environment, 28: 437–442.
Liao C, Akimoto M, Bivolarova MP, et al. (2021). A survey of bedroom ventilation types and the subjective sleep quality associated with them in Danish housing. Science of the Total Environment, 798: 149209.
Lin Z, Deng S (2008). A study on the thermal comfort in sleeping environments in the subtropics—Developing a thermal comfort model for sleeping environments. Building and Environment, 43: 70–81.
Lin Z, Tian L, Yao T, et al. (2011). Experimental and numerical study of room airflow under stratum ventilation. Building and Environment, 46: 235–244.
Liu W, Lian Z, Deng Q, et al. (2011). Evaluation of calculation methods of mean skin temperature for use in thermal comfort study. Building and Environment, 46: 478–488.
Luo Z, Wang Z, Wang H, et al. (2021). Characterizing spatiotemporal distributions of black carbon and PM2.5 at a toll station: Observations on manual and electronic toll collection lanes. Building and Environment, 199: 107933.
Mao N, Hao J, Cui B, et al. (2018a). Energy performance of a bedroom task/ambient air conditioning (TAC) system applied in different climate zones of China. Energy, 159: 724–736.
Mao N, Zhang B, Song M, et al. (2018b). A simplified numerical study on the energy performance and thermal environment of a bedroom TAC system. Energy and Buildings, 166: 305–316.
Mitchell D, Wyndham CH (1969). Comparison of weighting formulas for calculating mean skin temperature. Journal of Applied Physiology, 26: 616–622.
Moureh J, Flick D (2004). Airflow pattern and temperature distribution in a typical refrigerated truck configuration loaded with pallets. International Journal of Refrigeration, 27: 464–474.
Ntinas GK, Shen X, Wang Y, et al. (2018). Evaluation of CFD turbulence models for simulating external airflow around varied building roof with wind tunnel experiment. Building Simulation, 11: 115–123.
Olesen BW, Fanger PO (1973). The skin temperature distribution for resting man in comfort. Archives Des Sciences Physiologiques, 27: 385–393.
Raithby GD, Chui EH (1990). A finite-volume method for predicting a radiant heat transfer in enclosures with participating media. Journal of Heat Transfer, 112: 415–423.
Rossano AT, Alsid HF (1972). Evergreen point bridge toll booth ventilation study. Air resource program, University of Washington, USA.
Sandberg M, Sjöberg M (1983). The use of moments for assessing air quality in ventilated rooms. Building and Environment, 18: 181–197.
Sapkota A, Williams D, Buckley TJ (2005). Tollbooth workers and mobile source-related hazardous air pollutants: how protective is the indoor environment? Environmental Science & Technology, 39: 2936–2943.
Shirzadi M, Mirzaei PA, Tominaga Y (2020). CFD analysis of cross-ventilation flow in a group of generic buildings: Comparison between steady RANS, LES and wind tunnel experiments. Building Simulation, 13: 1353–1372.
Sun C, Zhang J, Guo Y, et al. (2018). Outdoor air pollution in relation to sick building syndrome (SBS) symptoms among residents in Shanghai, China. Energy and Buildings, 174: 68–76.
Tsai PJ, Shih TS, Chen HL, et al. (2004). Assessing and predicting the exposures of polycyclic aromatic hydrocarbons (PAHs) and their carcinogenic potencies from vehicle engine exhausts to highway toll station workers. Atmospheric Environment, 38: 333–343.
Van Hooff T, Blocken B, Timmermans HJP, et al. (2016). Analysis of the predicted effect of passive climate adaptation measures on energy demand for cooling and heating in a residential building. Energy, 94: 811–820.
Wang Z, Guo X, Pan X, et al. (2020). Numerical simulation of hybrid ventilation for underground subway depot with superstructures. International Journal of Ventilation, 19: 280–299.
Yang B, He Y, Wang S, et al. (2014). Personalized environmental control system for highway toll booths. China patent, ZL201210204756.9, 2014–7-30. (in Chinese)
Yang H, Qi C, Liu L, et al. (2010). Experimental study on indoor environment improvement in toll booth by personalized ventilation technology. Journal of Southeast University (English Edition), 26: 307–310.
Yin H, Li A (2016). Study of attached air curtain ventilation within a full-scale enclosure: comparison of four turbulence models. Indoor and Built Environment, 25: 962–975.
Yin H, Huo Y, Wang Y, et al. (2021a). Numerical investigation on mechanisms and performance of column attachment ventilation for winter heating. Building and Environment, 202: 108025.
Yin H, Li L, Wu R, et al. (2021b). A numerical study on the effect of column layout on air distribution and performance of column attachment ventilation. Building Simulation, 14: 1095–1108.
Yu H, Akita T (2019). The effect of illuminance and correlated colour temperature on perceived comfort according to reading behaviour in a capsule hotel. Building and Environment, 148: 384–393.
Zhou X, Lian Z, Lan L (2014). Experimental study on a bedside personalized ventilation system for improving sleep comfort and quality. Indoor and Built Environment, 23: 313–323.
Zhang Y, Li J, Sun H, et al. (2015). Evaluation of different air distribution systems for sleeping spaces in transport vehicles. Building and Environment, 94: 665–675.
Zhang X, Luo G, Xie J, et al. (2021). Associations of bedroom air temperature and CO2 concentration with subjective perceptions and sleep quality during transition seasons. Indoor Air, 31: 1004–1017.