Aircraft measurements of cloud–aerosol interaction over East Inner Mongolia

Advances in Atmospheric Sciences - Tập 34 - Trang 983-992 - 2017
Yuhuan Lü1,2, Hengchi Lei2,3, Jiefan Yang2
1Wuqing Meteorological Observatory of Tianjin, Tianjin, China
2Key Laboratory of Cloud-Precipitation Physics and Severe Storm, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
3Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Tóm tắt

To investigate the potential effects of aerosols on the microphysical properties of warm clouds, airborne observational data collected from 2009 to 2011 in Tongliao, Inner Mongolia, China, were statistically analyzed in this study. The results demonstrated that the vertical distribution of the aerosol number concentration (N a) was similar to that of the clean rural continent. The average aerosol effective diameter (D e) was maintained at approximately 0.4 μm at all levels. The data obtained during cloud penetrations showed that there was a progressive increase in the cloud droplet concentration (N c) and liquid water content (LWC) from outside to inside the clouds, while the N a was negatively related to the N c and LWC at the same height. The fluctuation of the N a, N c and LWC during cloud penetration was more obvious under polluted conditions (Type 1) than under clean conditions (Type 2). Moreover, the wet scavenging of cloud droplets had a significant impact on the accumulation mode of aerosols, especially on particles with diameters less than 0.4 μm. The minimum wet scavenging coefficient within the cloud was close to 0.02 under Type 1 conditions, while it increased to 0.1 under Type 2 conditions, which proved that the cloud wet scavenging effect under Type 1 conditions was stronger than that under Type 2 conditions. Additionally, cloud droplet spectra under Type 1 conditions were narrower, and their horizontal distributions were more homogeneous than those under Type 2 conditions.

Tài liệu tham khảo

Adhikari, M., Y. Ishizaka, H. Minda, R. Kazaoka, J. B. Jensen, J. L. Gras, and T. Nakajima, 2005: Vertical distribution of cloud condensation nuclei concentrations and their effect on microphysical properties of clouds over the sea near the southwest islands of Japan. J. Geophys. Res., 110(D10), D10203, doi: 10.1029/2004JD004758. Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227–1230, doi: 10.1126/science. 245.4923.1227. Collins, D. R., and Coauthors, 2000: In situ aerosol-size distributions and clear-column radiative closure during ACE-2. Tellus B: Chemical and Physical Meteorology, 52(2), 498–525, doi: http://dx.doi.org/10.3402/tellusb.v52i2.16175. Deng, Z. Z., C. S. Zhao, Q. Zhang, M. Y. Huang, and X. C. Ma, 2009: Statistical analysis of microphysical properties and the parameterization of effective radius of warm clouds in Beijing area. Atmos. Res., 93, 888–896, doi: 10.1016/j.atmosres. 2009.04.011. Gillani, N. V., S. E. Schwartz, W. R. Leaitch, J. W. Strapp, and G. A. Isaac, 1995: Field observations in continental stratiform clouds: Partitioning of cloud particles between droplets and unactivated interstitial aerosols. J. Geophys. Res., 100(D9), 18687–18706, doi: 10.1029/95JD01170. Gultepe, I., G. A. Isaac, W. R. Leaitch, and C. M. Banic, 1996: Parameterizations of marine stratus microphysics based on in situ observations: Implications for GCMs. J. Climate, 9(2), 345–357, doi: 10.1175/1520-0442(1996)009<0345: POMSMB>2.0.CO;2. Gultepe, I., and G. A. Isaac, 2004: Aircraft observations of cloud droplet number concentration: Implications for climate studies. Quart. J. Roy. Meteor. Soc., 130, 2377–2390, doi: 10.1256/qj.03.120. Hallberg, A., and Coauthors, 1994: Phase partitioning of aerosol particles in clouds at Kleiner Feldberg. Journal of Atmospheric Chemistry, 19, 107–127, doi: 10.1007/BF00696585. Hobbs, P. V., and A. L. Rangno, 1998: Microstructures of low and middle-level clouds over the Beaufort Sea. Quart. J. Roy. Meteor. Soc., 124(550), 2035–2071, doi: 10.1002/qj.49712455012. Hudson, J. G., and S. S. Yum, 2001: Maritime-continental drizzle contrasts in small cumuli. J. Atmos. Sci., 58(8), 915–926, doi: 10.1175/1520-0469(2001)058<0915:MCDCIS>2.0.CO;2. Hudson, J. G., and S. S. Yum, 2002: Cloud condensation nuclei spectra and polluted and clean clouds over the Indian Ocean. J. Geophys. Res., 107(D19), INX221-1–INX221-12, doi: 10.1029/2001JD000829. IPCC, 2007: Summary for Policymakers. Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Jaffe, D., I. McKendry, T. Anderson, and H. Price, 2003: Six “new” episodes of trans-Pacific transport of air pollutants. Atmos. Environ., 37(3), 391–404, doi: 10.1016/S1352-2310(02) 00862-2. Konwar, M., A. S. Panicker, D. Axisa, and T. V. Prabha, 2015: Near-cloud aerosols in monsoon environment and its impact on radiative forcing. J. Geophys. Res., 120, 1445–1457, doi: 10.1002/2014JD022420. Konwar, M., R. S. Maheskumar, J. R. Kulkarni, E. Freud, B. N. Goswami, and D. Rosenfeld, 2012: Aerosol control on depth of warm rain in convective clouds, J. Geophys. Res., 117(D13), D13204, doi: 10.1029/2012JD017585. Liu, P. F., C. S. Zhao, P. F. Liu, Z. Z. Deng, M. Y. Huang, X. C. Ma, and X. X. Tie, 2009: Aircraft study of aerosol vertical distributions over Beijing and their optical properties. Tellus B: Chemical and Physical Meteorology, 61(5), 756–767, doi: http://dx.doi.org/10.1111/j.1600-0889.2009.00440.x. Miles, N. L., J. Verlinde, and E. E. Clothiaux, 2000: Cloud droplet size distributions in low-level stratiform clouds. J. Atmos. Sci., 57, 295–311, doi: 10.1175/1520-0469(2000)057<0295: CDSDIL>2.0.CO;2. Noone, K. J., and Coauthors, 1992: Changes in aerosol size- and phase distributions due to physical and chemical processes in fog. Tellus B: Chemical and Physical Meteorology, 44, 489–504, doi: http://dx.doi.org/10.3402/tellusb.v44i5.15563. Prabha, T. V., A. Khain, R. S. Maheshkumar, G. Pandithurai, J. R. Kulkarni, M. Konwar, and B. N, Goswami, 2011: Microphysics of premonsoon and monsoon clouds as seen from in situ measurements during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX). J. Atmos. Sci., 68, 1882–1901, doi: 10.1175/2011JAS3707.1. Rangno, A. L., and P. V. Hobbs, 2005: Microstructures and precipitation development in cumulus and small cumulonimbus clouds over the warm pool of the tropical Pacific Ocean. Quart. J. Roy. Meteor. Soc., 131, 639–673, doi: 10.1256/qj. 04.13. Seinfeld, J. H., and S. N. Pandis, 1997: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley-Interscience, 444–445. Stith, J. L., J. Haggerty, C. Grainger, and A. Detwiler, 2006: A comparison of the microphysical and kinematic characteristics of mid-latitude and tropical convective updrafts and downdrafts. Atmos. Res., 82, 350–366, doi: 10.1016/j.atmosres.2005.12.008. Twomey, S., and T. A. Wojciechowski, 1969: Observations of the geographical variation of cloud nuclei. J. Atmos. Sci., 26, 648–651, doi: 10.1175/1520-0469(1969)26<648: OOTGVO>2.0.CO;2. Zhang, Q., C. S. Zhao, X. X. Tie, Q. Wei, M. Y. Huang, G. H. Li, Z. M. Ying, and C. C. Li, 2006: Characterizations of aerosols over the Beijing region: A case study of aircraft measurements. Atmos. Environ., 40, 4513–4527, doi: 10.1016/j.atmosenv.2006.04.032. Zhang, Q., J. N. Quan, X. X. Tie, M. Y. Huang, and X. C. Ma, 2011: Impact of aerosol particles on cloud formation: Aircraft measurements in China. Atmos. Environ., 45, 665–672, doi: 10.1016/j.atmosenv.2010.10.025.