Airborne lidar-based estimates of tropical forest structure in complex terrain: opportunities and trade-offs for REDD+

Veronika Leitold1, Michael Keller2, Douglas C. Morton3, Bruce D. Cook3, Y. E. Shimabukuro1
1Remote Sensing Division, National Institute for Space Research (INPE), São José dos Campos, SP, CEP 12201-970, Brazil
2International Institute of Tropical Forestry, USDA Forest Service, San Juan, 00926, Puerto Rico
3Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Angelsen A, editor. Moving ahead with REDD: issues, options and implications. Bogor, Indonesia: Center for International Forestry Research (CIFOR); 2008. p. 156.

Naesset E. Estimating timber volume of forest stands using airborne laser scanner data. Remote Sens Environ. 1997;51:246–53.

Lefsky MA, Harding DJ, Cohen WB, Parker GG. Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA. Remote Sens Environ. 1999;67:83–98.

Lefsky MA, Cohen WB, Harding DJ, Parker GG, Acker SA, Gower ST. Lidar remote sensing of aboveground biomass in three biomes. Glob Ecol Biogeogr. 2002;11:393–400.

Drake JB, Knox RG, Dubayah RO, Clark DB, Condit R, Blair JB, et al. Above-ground biomass estimation in closed canopy Neotropical forests using lidar remote sensing: factors affecting the generality of relationships. Glob Ecol Biogeogr. 2003;12:147–59.

Lim K, Treitz P, Wulder MA, St-Onge B, Flood M. Lidar remote sensing of forest structure. Prog Phys Geogr. 2003;27:88–106.

Naesset E, Gobakken T, Holmgren J, Hyyppä H, Hyyppä J, Maltamo M, et al. Laser scanning of forest resources: the Nordic experience. Scand J For Res. 2004;19:482–99.

Naesset E, Gobakken T. Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser. Remote Sens Environ. 2008;112:3079–90.

Asner GP, Hughes RF, Varga TA, Knapp DE, Kennedy-Bowdoin T. Environmental and biotic controls over aboveground biomass throughout a tropical rain forest. Ecosystems. 2009;12:261–78.

Clark ML, Roberts DA, Ewel JJ, Clark DB. Estimation of tropical rain forest aboveground biomass with small-footprint lidar and hyperspectral sensors. Remote Sens Environ. 2011;115:2931–42.

Mascaro J, Detto M, Asner GP, Muller-Landau H. Evaluating uncertainty in mapping forest carbon with airborne LiDAR. Remote Sens Environ. 2011;115:3770–4.

Asner GP, Mascaro J, Muller-Landau HC, Vieilledent G, Vaudry R, Rasamoelina M, et al. A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia. 2011;168:1147–60.

Asner GP, Mascaro J. Mapping tropical forest carbon: calibrating plot estimates to a simple LiDAR metric. Remote Sens Environ. 2014;140:614–24.

Ni-Meister W, Lee S, Strahler AH, Woodcock CE, Schaaf C, Yao T, et al. Assessing general relationships between aboveground biomass and vegetation structure parameters for improved carbon estimate from lidar remote sensing. J Geophys Res. 2010;115:G00E11.

D’Oliveira MVN, Reutebuch SE, McGaughey RJ, Andersen H-E. Estimating forest biomass and identifying low-intensity logging areas using airborne scanning lidar in Antimary State Forest, Acre State, Western Brazilian Amazon. Remote Sens Environ. 2012;124:479–91.

Asner GP, Powell GVN, Mascaro J, Knapp DE, Clark JK, Jacobson J, et al. High-resolution forest carbon stocks and emissions in the Amazon. Proc Natl Acad Sci U S A. 2010;107:16738–42.

Asner GP, Hughes RF, Mascaro J, Uowolo AL, Knapp DE, Jacobson J, et al. High-resolution carbon mapping on the million-hectare Island of Hawaii. Front Ecol Environ. 2011;9:434–9.

Asner GP, Mascaro J, Anderson C, Knapp DE, Martin RE, Kennedy-Bowdoin T, et al. High-fidelity national carbon mapping for resource management and REDD+. Carbon Bal Manage. 2013;8:7.

Tinkham WT, Smith AMS, Hoffman C, Hudak AT, Falkowski MJ, Swanson ME, et al. Investigating the influence of LiDAR ground surface errors on the utility of derived forest inventories. Can J For Res. 2012;42:413–22.

Aguilar FJ, Mills JP. Accuracy assessment of LiDAR-derived digital elevation models. Photogramm Rec. 2008;23:148–69.

Su J, Bork E. Influence of vegetation, slope, and LiDAR sampling angle on DEM accuracy. Photogramm Eng Remote Sens. 2006;72:1265–74.

Cobby DM, Mason DC, Davenport IJ. Image processing of airborne scanning laser altimetry data for improved river flood modelling. ISPRS J Photogramm Remote Sens. 2001;56:121–38.

Hodgson ME, Jensen J, Raber G, Tullis J, Davis BA, Thompson G, et al. Evaluation of lidar-derived elevation and terrain slope in leaf-off conditions. Photogramm Eng Remote Sens. 2005;71:817–23.

Spaete LP, Glenn NF, Derryberry DR, Sankey TT, Mitchell JJ, Hardegree SP. Vegetation and slope effects on accuracy of a LiDAR-derived DEM in the sagebrush steppe. Remote Sens Lett. 2010;2:317–26.

Hodgson ME, Bresnahan P. Accuracy of airborne LiDAR-derived elevation: empirical assessment and error budget. Photogramm Eng Remote Sens. 2004;70:331–9.

Clark ML, Clark DB, Roberts DA. Small-footprint lidar estimation of sub-canopy elevation and tree height in a tropical rain forest landscape. Remote Sens Environ. 2004;91:68–89.

Reutebuch SE, McGaughey RJ, Anderson HE, Carson WW. Accuracy of a high-resolution lidar terrain model under a conifer forest canopy. Can J Remote Sens. 2003;29:527–35.

Kraus K, Pfeifer N. Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS J Photogramm Remote Sens. 1998;53:193–203.

Hodgson ME, Jensen JR, Schmidt L, Schill S, Davis B. An evaluation of LIDAR- and IFSAR-derived digital elevation models in leaf-on conditions with USGS Level 1 and Level 2 DEMs. Remote Sens Environ. 2003;84:295–308.

Andersen H-E, Reutebuch SE, McGaughey RJ. A rigorous assessment of tree height measurements obtained using airborne LIDAR and conventional field methods. Can J Remote Sens. 2006;32:355–66.

Gonzalez P, Asner GP, Battles JJ, Lefsky MA, Waring KM, Palace M. Forest carbon densities and uncertainties from Lidar, QuickBird, and field measurements in California. Remote Sens Environ. 2010;114:1561–75.

Gatziolis D, Andersen H-E. A guide to LIDAR data acquisition and processing for the forests of the Pacific Northwest, Gen. Tech. Rep. PNW-GTR-768. Portland, OR: U.S: Department of Agriculture, Forest Service, Pacific Northwest Research Station; 2008.

Säynäjoki R, Maltamo M, Korhonen KT. Forest inventory with sparse resolution Airborne Laser Scanning data – a literature review. Working Papers of the Finnish Forest Research Institute. 2013, 103. 90.

Hudak AT, Strand EK, Vierling LA, Byrne JC, Eitel JUH, Martinuzzi S, et al. Quantifying aboveground forest carbon pools and fluxes from repeat LiDAR surveys. Remote Sens Environ. 2012;123:25–40.

Jakubowski MK, Guo Q, Kelly M. Tradeoffs between lidar pulse density and forest measurement accuracy. Remote Sens Environ. 2013;130:245–53.

Hyyppä H, Yu X, Hyyppä J, Kaartinen H, Kaasalainen S, Honkavaara E, et al. Factors affecting the quality of DTM generation in forested areas. In Proceedings of ISPRS Workshop on Laser Scanning 2005, Vol. XXXVI, 3/W19, 85–90. Netherlands: GITC bv. 12–14 September 2005, Enschede, Netherlands.

Liu X. Airborne LiDAR for DEM generation: some critical issues. Prog Phys Geogr. 2008;32:31–49.

Lefsky MA. A global forest canopy height map from the moderate resolution imaging spectroradiometer and the geoscience laser altimeter system. Geophys Res Lett. 2010;37:L15401.

Feldpausch TR, Lloyd J, Lewis SL, Brienen RJW, Gloor M, Mendoza AM, et al. Tree height integrated into pantropical forest biomass estimates. Biogeosciences. 2012;9:3381–403.

Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WBC, et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Chang Biol. 2014;20:3177–90.

Wulder MA, White JC, Nelson RF, Naesset E, Ørka HO, Coops NC, et al. Lidar sampling for large-area forest characterization: a review. Remote Sens Environ. 2012;121:196–209.

Zolkos SG, Goetz SJ, Dubayah R. A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing. Remote Sens Environ. 2013;128:289–98.

Mascaro J, Asner GP, Davies S, Dehgan A, Saatchi S. These are the days of lasers in the jungle. Carbon Bal Manag. 2014;9:7.

SMA - Secretaria do Meio Ambiente. Planos de Manejo das Unidades de Conservação: Parque Estadual da Serra do Mar - Núcleo Picinguaba. São Paulo: Plano de Gestao Ambiental - Fase I; 1998.

Alves LF, Vieira SA, Scaranello MA, Camargo PB, Santos FAM, Joly CA, et al. Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). For Ecol Manag. 2010;260:679–91.

Joly CA, Assis MA, Bernacci LC, Tamashiro JY, Campos MCR, Gomes JAMA, et al. Floristic and phytosociology in permanent plots of the Atlantic Rainforest along an altitudinal gradient in southeastern Brazil. Biota Neotropica. 2012;12:125–45.

Cook BD, Corp LA, Nelson RF, Middleton EM, Morton DC, McCorkel JT, et al. NASA Goddard’s LiDAR, Hyperspectral and Thermal (G-LiHT) Airborne Imager. Remote Sens. 2013;5:4045–66.

Zhang K, Chen S, Whitman D, Shyu M, Yan J, Zheng C. A progressive morphological filter for removing nonground measurements from airborne LiDAR data. IEEE Trans Geosci Remote Sens. 2003;41:872–82.

BCAL LiDAR Tools ver 2.x.x-dev9. Idaho State University, Department of Geosciences, Boise Center Aerospace Laboratory (BCAL), Boise, Idaho. [ http://bcal.geology.isu.edu/envitools.shtml ]

Zandbergen PA. Characterizing the error distribution of lidar elevation data for North Carolina. Int J Remote Sens. 2011;32:409–30.

Höhle J, Höhle M. Accuracy assessment of digital elevation models by means of robust statistical methods. ISPRS J Photogramm Remote Sens. 2009;64:398–406.

Chen C, Fan Z, Yue T, Dai H. A robust estimator for the accuracy assessment of remote-sensing-derived DEMs. Int J Remote Sens. 2012;33:2482–97.

Morsdorf F, Frey O, Meier E, Itten KI, Allgöwer B. Assessment of the influence of flying altitude and scan angle on biophysical vegetation products derived from airborne laser scanning. Int J Remote Sens. 2008;29:1387–406.