Airborne imaging spectroscopy for assessing land-use effect on soil quality in drylands
Tài liệu tham khảo
Alewell, 2019, Using the USLE: Chances, challenges and limitations of soil erosion modelling, Int. Soil .Water Conserv. Res., 7, 203, 10.1016/j.iswcr.2019.05.004
Amiri, 2008, Effects of livestock grazing on vegetation composition and soil moisture properties in grazed and non-grazed range site, Journal of Biological Sciences, 8, 1289, 10.3923/jbs.2008.1289.1297
Andrews, 2004, The Soil Management Assessment Framework: A Quantitative Soil Quality Evaluation Method, Soil Sci. Soc. Am. J., 68, 1945, 10.2136/sssaj2004.1945
Andrews, 2002, On-farm assessment of soil quality in California’s Central Valley, Agron. J., 94, 12
Askari, 2015, Evaluation of soil quality for agricultural production using visible–near-infrared spectroscopy, Geoderma, 243–244, 80, 10.1016/j.geoderma.2014.12.012
Ayoubi, S., Pilehvar, A., Mokhtari, P., Sahrawat, K.L. 2011. Application of Artificial Neural Network (ANN) to Predict Soil Organic Matter Using Remote Sensing Data in Two Ecosystems, in: Biomass and Remote Sensing of Biomass. InTech. http://doi.org/10.5772/18956.
Ballabio, 2019, Mapping LUCAS topsoil chemical properties at European scale using Gaussian process regression, Geoderma, 355, 113912, 10.1016/j.geoderma.2019.113912
Barré, 2008, Which 2:1 clay minerals are involved in the soil potassium reservoir? Insights from potassium addition or removal experiments on three temperate grassland soil clay assemblages, Geoderma, 146, 216, 10.1016/j.geoderma.2008.05.022
Barsi, 2014, The Spectral Response of the Landsat-8 Operational Land Imager, Remote Sens., 6, 10232, 10.3390/rs61010232
Barton, 2005, Clay Minerals, Encycl. Soil Sci. Second Ed.
Beckers, 2013, Ancient Water Harvesting Methods in the Drylands of the Mediterranean and Western Asia. eTopoi, J. Anc. Stud., 145
Bellinaso, 2021, Clay content prediction using spectra data collected from the ground to space platforms in a smallholder tropical area, Geoderma, 399, 115116, 10.1016/j.geoderma.2021.115116
Bellon-Maurel, 2010, Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy, TrAC, Trends Anal. Chem., 29, 1073, 10.1016/j.trac.2010.05.006
Ben-Dor, E., 2011. Characterization of Soil Properties Using Reflectance Spectroscopy, in: Hyperspectral Remote Sensing of Vegetation. CRC Press, pp. 513–558. http://doi.org/10.1201/b11222-31.
Ben-Dor, 1995, Near-Infrared Analysis as a Rapid Method to Simultaneously Evaluate Several Soil Properties, Soil Sci. Soc. Am. J., 59, 364, 10.2136/sssaj1995.03615995005900020014x
Ben-Dor, 2009, Using Imaging Spectroscopy to study soil properties, Remote Sens. Environ., 113, S38, 10.1016/j.rse.2008.09.019
Ben-Dor, 2002, Mapping of several soil properties using DAIS-7915 hyperspectral scanner data-a case study over clayey soils in Israel, Int. J. Remote Sens., 23, 1043, 10.1080/01431160010006962
Ben Dor, 2015, Reflectance measurements of soils in the laboratory: Standards and protocols, Geoderma, 245–246, 112, 10.1016/j.geoderma.2015.01.002
Biagetti, S., Alcaina-Mateos, J., Ruiz-Giralt, A., Lancelotti, C., Groenewald, P., Ibañez-Insa, J., Gur-Arie, S., Morton, F., Merlo, S., 2021. Identifying anthropogenic features at Seoke (Botswana) using pXRF: Expanding the record of southern African Stone Walled Sites. PLoS One 16, e0250776. http://doi.org/10.1371/JOURNAL.PONE.0250776.
Bogrekci, 2005, Spectral phosphorus mapping using diffuse reflectance of soils and grass, Biosyst. Eng., 91, 305, 10.1016/j.biosystemseng.2005.04.015
Brady, N.C., Weil, R.R., 1999. Soil organic matter. In: The Nature and Properties of Soils.
Brook, 2015, Supervised Vicarious Calibration (SVC) of Multi-Source Hyperspectral Remote-Sensing Data, Remote Sens., 7, 6196, 10.3390/rs70506196
Bünemann, 2018, Soil quality – A critical review, Soil Biol. Biochem., 120, 105, 10.1016/j.soilbio.2018.01.030
Casida, 1964, Soil Dehydrogenase Activity, Soil Sci., 98, 371, 10.1097/00010694-196412000-00004
Cécillon, 2008, Variable selection in near infrared spectra for the biological characterization of soil and earthworm casts, Soil Biol. Biochem., 40, 1975, 10.1016/j.soilbio.2008.03.016
Cécillon, 2009, Assessment and monitoring of soil quality using near infrared reflectance spectroscopy (NIRS), Eur. J. Soil Sci., 60, 770, 10.1111/j.1365-2389.2009.01178.x
Chabrillat, S., Ben-Dor, E., Cierniewski, J., Gomez, C., Schmid, T., Van Wesemael, B., 2019. Imaging Spectroscopy for Soil Mapping and Monitoring 40, 361–399. http://doi.org/10.1007/s10712-019-09524-0.
Chabrillat, 2019, Preparing a soil spectral library using the Internal Soil Standard (ISS) method: Influence of extreme different humidity laboratory conditions, Geoderma, 355, 113855, 10.1016/j.geoderma.2019.07.013
Chang, C., Laird, D., Mausbach, M.J., 2001. Near-Infrared Reflectance Spectroscopy – Principal Components Regression Analyses of Soil Properties Near-Infrared Reflectance Spectroscopy – Principal Components. http://doi.org/10.2136/sssaj2001.652480x.Rights.
Chen, 2019, A Comparative Assessment of Geostatistical, Machine Learning, and Hybrid Approaches for Mapping Topsoil Organic Carbon Content, ISPRS Int. J. Geo-Inf, 8, 174, 10.3390/ijgi8040174
Chesworth, W., 2008. Encyclopedia of soil science/edited by Ward Chesworth., Encyclopedia of soil science, Encyclopedia of earth sciences. Springer, Dordrecht.
Cohen, 2006, Evaluating ecological condition using soil biogeochemical parameters and near infrared reflectance spectra, Environ. Monit. Assess., 116, 427, 10.1007/s10661-006-7664-8
Conforti, 2013, Studying the relationship between water-induced soil erosion and soil organic matter using Vis-NIR spectroscopy and geomorphological analysis: A case study in southern Italy, Catena, 110, 44, 10.1016/j.catena.2013.06.013
Crist, 2017, The interaction of human population, food production, and biodiversity protection, Science, 356, 260, 10.1126/science.aal2011
da Rocha Neto, 2017, Hyperspectral remote sensing for detecting soil salinization using ProSpecTIR-VS aerial imagery and sensor simulation, Remote Sens., 9, 42, 10.3390/rs9010042
Davies, 2017, Mapping acidic mine waste with seasonal airborne hyperspectral imagery at varying spatial scales, Environ. Earth Sci., 76, 1, 10.1007/s12665-017-6763-x
de Santana, 2021, Comparison of PLS and SVM models for soil organic matter and particle size using vis-NIR spectral libraries, Geoderma Reg., 27, e00436, 10.1016/j.geodrs.2021.e00436
Deiss, 2020, Tuning support vector machines regression models improves prediction accuracy of soil properties in MIR spectroscopy, Geoderma, 365, 114227, 10.1016/j.geoderma.2020.114227
Demattê, 2019, The Brazilian Soil Spectral Library (BSSL): A general view, application and challenges, Geoderma, 354, 113793, 10.1016/j.geoderma.2019.05.043
Demattê, 2007, Spectral reflectance for the mineralogical evaluation of Brazilian low clay activity soils, Int. J. Remote Sens., 28, 4537, 10.1080/01431160701250408
Demattê, 2017, Chemometric soil analysis on the determination of specific bands for the detection of magnesium and potassium by spectroscopy, Geoderma, 288, 8, 10.1016/j.geoderma.2016.11.013
Diek, 2016, Creating Multi-Temporal Composites of Airborne Imaging Spectroscopy Data in Support of Digital Soil Mapping, Remote Sens., 8, 906, 10.3390/rs8110906
Ding, 2020, The integrated effect of salinity, organic amendments, phosphorus fertilizers, and deficit irrigation on soil properties, phosphorus fractionation and wheat productivity, Sci. Rep., 10, 1
Doran, 1994, Defining and assessing soil quality, Defin. soil Qual. a Sustain. Environ., 10.2136/sssaspecpub35
Drucker, 1997, Support Vector Regression Machines, 155
Eldridge, 2020, The pervasive and multifaceted influence of biocrusts on water in the world’s drylands, Glob. Chang. Biol., 26, 6003, 10.1111/gcb.15232
FAO, 2019. The State of Food and Agriculture 2019, The State of Food and Agriculture 2019. Food and Agriculture Organization of the United Nations, Rome. http://doi.org/10.4060/ca6030en.
Feingersh, 2015, SHALOM - A Commercial Hyperspectral Space Mission, 247
Foley, 2005, Global Consequences of Land Use, Science (80-.), 309, 570, 10.1126/science.1111772
Freschet, 2011, Use of Near Infrared Reflectance Spectroscopy (NIRS) for Predicting Soil Fertility and Historical Management, Commun. Soil Sci. Plant Anal., 42, 1692, 10.1080/00103624.2011.584597
Gholizadeh, 2013, Visible, near-infrared, and mid-infrared spectroscopy applications for soil assessment with emphasis on soil organic matter content and quality: State-of-the-art and key issues, Appl. Spectrosc., 67, 1349, 10.1366/13-07288
Goetz, 1985, Imaging spectrometry for earth remote sensing, Science (80-.), 228, 1147, 10.1126/science.228.4704.1147
Groenendyk, D.G., Ferré, T.P.A., Thorp, K.R., Rice, A.K., 2015. Hydrologic-Process-Based Soil Texture Classifications for Improved Visualization of Landscape Function. PLoS One 10, e0131299. http://doi.org/10.1371/journal.pone.0131299.
Guanter, 2015, The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation, Remote Sens., 7, 8830, 10.3390/rs70708830
Haynes, R.J., Naidu, R., 1998. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions : a review. 123–137.
Haubrock, 2008, Surface soil moisture quantification and validation based on hyperspectral data and field measurements, Journal of Applied Remote Sensing, 2, 10.1117/1.3059191
He, 2009, Spectral features of soil organic matter, Geo-Spatial Inf. Sci., 12, 33, 10.1007/s11806-009-0160-x
Hengl, 2018, Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables, PeerJ, 6, 10.7717/peerj.5518
Hotelling, 1933, Analysis of a complex of statistical variables into principal components, J. Educ. Psychol., 24, 417, 10.1037/h0071325
Hu, 2017, Role of flood discharge in shaping stream geometry: Analysis of a small modern stream in the Uinta Basin, USA. J. Palaeogeogr., 6, 84, 10.1016/j.jop.2016.10.001
Idowu, 2008, Farmer-oriented assessment of soil quality using field, laboratory, and VNIR spectroscopy methods, Plant Soil, 307, 243, 10.1007/s11104-007-9521-0
Idowu, 2009, Use of an integrative soil health test for evaluation of soil management impacts, Renew. Agric. Food Syst., 24, 214, 10.1017/S1742170509990068
Iglewicz, B., 2011. Summarizing Data with Boxplots, in: International Encyclopedia of Statistical Science. Springer Berlin Heidelberg, pp. 1572–1575. http://doi.org/10.1007/978-3-642-04898-2_582.
Jia, 2020, A kernel-driven BRDF approach to correct airborne hyperspectral imagery over forested areas with rugged topography, Remote Sens., 12, 432, 10.3390/rs12030432
Johnston, 2003, ASRIS: the database, Soil Res., 41, 1021, 10.1071/SR02033
Jolliffe, I.T., Cadima, J., Cadima, J., 2016. Principal component analysis : a review and recent developments Subject Areas : Author for correspondence.
Kanning, 2016, Regionalization of uncovered agricultural soils based on organic carbon and soil texture estimations, Remote Sens., 8, 927, 10.3390/rs8110927
Karlen, 2003, Soil quality: why and how?, Geoderma, 114, 145, 10.1016/S0016-7061(03)00039-9
Karlen, 1997, Soil Quality: A Concept, Definition, and Framework for Evaluation (A Guest Editorial), Soil Sci. Soc. Am. J., 61, 4, 10.2136/sssaj1997.03615995006100010001x
Kettler, 2001, Simplified Method for Soil Particle-Size Determination to Accompany Soil-Quality Analyses, Soil Sci. Soc. Am. J., 65, 849, 10.2136/sssaj2001.653849x
Kinoshita, 2012, Strategies for Soil Quality Assessment Using Visible and Near-Infrared Reflectance Spectroscopy in a Western Kenya Chronosequence, Soil Sci. Soc. Am. J., 76, 1776, 10.2136/sssaj2011.0307
Kothari, C., 2004. Research methodology: methods and techniques, New Age International. http://196.29.172.66:8080/jspui/bitstream/123456789/2574/1/Research%20Methodology.pdf.
Kuhn, M., 2020. caret: Classification and Regression Training.
Lal, 2011, Soil health and climate change: an overview, 3
Gozukara, 2022, A soil quality index using Vis-NIR and pXRF spectra of a soil profile, CATENA, 211, 10.1016/j.catena.2021.105954
Greenland, 1997, Degradation and resilience of soils, Philos. Trans. R. Soc. B Biol. Sci., 352, 997, 10.1098/rstb.1997.0078
Lee, 2015, An introduction to the NASA Hyperspectral InfraRed Imager (HyspIRI) mission and preparatory activities, Remote Sens. Environ., 167, 6, 10.1016/j.rse.2015.06.012
Levi, 2021, Soil quality index for assessing phosphate mining restoration in a hyper-arid environment, Ecol. Indic., 125, 107571, 10.1016/j.ecolind.2021.107571
Levi, 2020, Using reflectance spectroscopy for detecting land-use effects on soil quality in drylands, Soil Tillage Res., 199, 104571, 10.1016/j.still.2020.104571
Leys, C., Ley, C., Klein, O., Bernard, P., Licata, L., 2013. Journal of Experimental Social Psychology Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. 4–6.
Li, 2020, Selenium-enriched soil mapping using airborne SASI images, Geoderma, 363, 114133, 10.1016/j.geoderma.2019.114133
Lima, 2016, Spatialization of soil quality index in the Sub-Basin of Posses, Extrema, Minas Gerais., 20, 78
Loizzo, R., Guarini, R., Longo, F., Scopa, T., Formaro, R., Facchinetti, C., Varacalli, G., 2018. Prisma: The Italian hyperspectral mission, in: International Geoscience and Remote Sensing Symposium (IGARSS). Institute of Electrical and Electronics Engineers Inc., pp. 175–178. http://doi.org/10.1109/IGARSS.2018.8518512.
Lugassi, R., Goldshleger, N., Chudnovsky, A., 2017. Studying Vegetation Salinity: From the Field View to a Satellite-Based Perspective 1–16. http://doi.org/10.3390/rs9020122.
Marques, 2019, How qualitative spectral information can improve soil profile classification?, J. Near Infrared Spectrosc., 27, 156, 10.1177/0967033518821965
Masto, 2008, Soil quality indices for evaluation of long-term land use and soil management practices in semi-arid sub-tropical India, L. Degrad. Dev., 19, 516, 10.1002/ldr.857
Masto, 2007, Soil quality response to long-term nutrient and crop management on a semi-arid Inceptisol, Agric. Ecosyst. Environ., 118, 130, 10.1016/j.agee.2006.05.008
Matsunaga, 2013, Current status of Hyperspectral Imager Suite (HISUI), 3510
McBartney, 2003, On digital soil mapping, Geoderma, 10.1016/S0016-7061(03)00223-4
Mcbratney, 2016
Metzger, 2006, The vulnerability of ecosystem services to land use change, Agric. Ecosyst. Environ., 114, 69, 10.1016/j.agee.2005.11.025
Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., 2019. e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien.
Michel, S., Gamet, P., Lefevre-Fonollosa, M.J., 2011. HYPXIM A hyperspectral satellite defined for science, security and defence users, in: Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing. http://doi.org/10.1109/WHISPERS.2011.6080864.
Miles, J., 2005. R-Squared, Adjusted R-Squared. Encycl. Stat. Behav. Sci. http://doi.org/10.1002/0470013192.BSA526.
Moebius-Clune, B.N., 2017. Comprehensive Assessment of Soil Health.
Moebius-Clune, B.N., Moebius-Clune, D., Gugino, B., Idowu, O., Schindelbeck, R., Ristow, A., van Es, H., Thies, J., Shayler, H., McBride, M., Wolfe, D., Abawi, G., 2016. Comprehensive Assessment of Soil Health - The Cornell Framework Manual. http://doi.org/10.1080/00461520.2015.1125787.
Moreira, 2015, Potential of multispectral and hyperspectral data to detect saline-exposed soils in Brazil, GIScience Remote Sens., 52, 416, 10.1080/15481603.2015.1040227
Morón, A., Cozzolino, D., 2007. Measurement of Phosphorus in Soils by Near Infrared Reflectance Spectroscopy: Effect of Reference Method on Calibration. http://doi.org/10.1080/00103620701548498 38, 1965–1974. http://doi.org/10.1080/00103620701548498.
Mourad, 2005, Calibration and validation of multiple regression models for stormwater quality prediction: Data partitioning, effect of dataset size and characteristics, Water Sci. Technol., 52, 45, 10.2166/wst.2005.0060
Norman, 1981, The Determination of Nitrate and Nitrite in Soil Extracts by Ultraviolet Spectrophotometry 1, Soil Sci. Soc. Am. J., 45, 347, 10.2136/sssaj1981.03615995004500020024x
Nussbaum, 2018, Evaluation of digital soil mapping approaches with large sets of environmental covariates, SOIL, 4, 1, 10.5194/soil-4-1-2018
Ohana-levi, 2018, Time series analysis of vegetation-cover response to environmental factors and residential development in a dryland region, GIScience Remote Sens., 00, 1
Olsvig-Whittaker, 2012, Patterns in Habitat Type, Species Richness and Community Composition at Avdat Lter, Israel. J. Landsc. Ecol., 5, 5, 10.2478/v10285-012-0056-6
Ong, C., Carrère, V., Chabrillat, S., Clark, R., Hoefen, T., Kokaly, R., Marion, R., Souza Filho, C.R., Swayze, G., Thompson, D.R., 2019. Imaging Spectroscopy for the Detection, Assessment and Monitoring of Natural and Anthropogenic Hazards 40, 431–470. http://doi.org/10.1007/s10712-019-09523-1.
Orgiazzi, 2018, LUCAS Soil, the largest expandable soil dataset for Europe: a review, Eur. J. Soil Sci., 69, 140, 10.1111/ejss.12499
Ou, 2021, Semi-supervised DNN regression on airborne hyperspectral imagery for improved spatial soil properties prediction, Geoderma, 385, 114875, 10.1016/j.geoderma.2020.114875
Padarian, 2019, Using deep learning to predict soil properties from regional spectral data, Geoderma Reg., 16, e00198, 10.1016/j.geodrs.2018.e00198
Pansu, 2006, Organic Forms of Nitrogen, Mineralizable Nitrogen (and Carbon), 497
Paz-Kagan, 2019, Resource redistribution effects on annual plant communities in a runoff harvesting system in dryland, J. Arid Environ., 171, 103984, 10.1016/j.jaridenv.2019.05.012
Paz-kagan, 2016, Catena Grazing intensity effects on soil quality : A spatial analysis of a Mediterranean grassland, Catena, 146, 100, 10.1016/j.catena.2016.04.020
Paz-Kagan, 2017, Ecosystem effects of integrating human-made runoff-harvesting systems into natural dryland watersheds, J. Arid Environ., 147, 133, 10.1016/j.jaridenv.2017.07.015
Paz-Kagan, 2014, A spectral soil quality index (SSQI) for characterizing soil function in areas of changed land use, Geoderma, 230–231, 171, 10.1016/j.geoderma.2014.04.003
Paz-Kagan, 2015, Mapping the spectral soil quality index (SSQI) using airborne imaging spectroscopy, Remote Sens., 7, 15748, 10.3390/rs71115748
Pelta, 2019, A machine learning approach to detect crude oil contamination in a real scenario using hyperspectral remote sensing, Int. J. Appl. Earth Obs. Geoinf., 82, 101901
Rahimi, 2000, Effect of soil organic matter, electrical conductivity and sodium adsorption ratio on tensile strength of aggregates, Soil Tillage Res., 54, 145, 10.1016/S0167-1987(00)00086-6
Rinot, 2019, Soil health assessment: A critical review of current methodologies and a proposed new approach, Sci. Total Environ., 648, 1484, 10.1016/j.scitotenv.2018.08.259
Roades, J.D., 1982. Soluble salts, in: Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties, 2nd Ed. ASA-SSSA, Agronomy monograph 9, pp. 137–179.
Robbins, 1984, Sodium adsorption ratio-exchangeable sodium percentage relationships in a high potassium saline-sodic soil, Irrig. Sci., 5, 173, 10.1007/BF00264606
Chutipong, 2018, In situ near-infrared spectroscopy for soil organic matter prediction in paddy soil, pasak watershed, thailand, Plant, Soil Environ., 64, 70, 10.17221/716/2017-PSE
Rosero-Vlasova, 2016, Assessment of laboratory VIS-NIR-SWIR setups with different spectroscopy accessories for characterisation of soils from wildfire burns, Biosyst. Eng., 152, 51, 10.1016/j.biosystemseng.2016.06.011
Rossel, 2010, Using data mining to model and interpret soil diffuse reflectance spectra, Geoderma, 158, 46, 10.1016/j.geoderma.2009.12.025
Saygin, S.D., 2018. Strategies to Enhance Sustainability of Land Resources in Arid Regions, in: Arid Environments and Sustainability. InTech. http://doi.org/10.5772/intechopen.72492.
Schindelbeck, 2008, Comprehensive assessment of soil quality for landscape and urban management, Landsc. Urban Plan., 88, 73, 10.1016/j.landurbplan.2008.08.006
Schlapfer, 2015, Operational BRDF effects correction for wide-field-of-view optical scanners (BREFCOR), IEEE Trans. Geosci. Remote Sens-ing, 53, 1855, 10.1109/TGRS.2014.2349946
Schmid, T., Koch, M., Gumuzzio, J., Medel, I., 2005. Field and imaging spectroscopy to determine soil degradation stages in semi-arid terrestrial ecosystems.
Schmid, 2016, Characterization of Soil Erosion Indicators Using Hyperspectral Data From a Mediterranean Rainfed Cultivated Region, IEEE J. Sel. Top. Appl. EARTH Obs. Remote Sens., 9, 845, 10.1109/JSTARS.2015.2462125
Scrimgeour, C., 2008. Soil Sampling and Methods of Analysis (Second Edition). Edited by M. R. Carter and E. G. Gregorich. Boca Raton, Fl, USA: CRC Press (2008), pp. 1224, £85.00. ISBN-13: 978-0-8593-3586-0. Exp. Agric. 44, 437–437. http://doi.org/10.1017/s0014479708006546.
Shapiro, 2006, Soils of Israel, Eurasian Soil Sci., 39, 1170, 10.1134/S1064229306110032
Shi, 2020, Large-Scale, High-Resolution Mapping of Soil Aggregate Stability in Croplands Using APEX Hyperspectral Imagery, Remote Sens., 12, 666, 10.3390/rs12040666
Shi, 2015, Quantitative analysis of sedimentary rocks using laser-induced breakdown spectroscopy: Comparison of support vector regression and partial least squares regression chemometric methods, J. Anal. At. Spectrom., 30, 2384, 10.1039/C5JA00255A
Shi, 2014, Development of a national VNIR soil-spectral library for soil classification and prediction of organic matter concentrations, Sci. China Earth Sci., 57, 1671, 10.1007/s11430-013-4808-x
Singer, A., 2007. The soils of Israel, The Soils of Israel. Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-540-71734-8.
Singh, 2005, Chemometric data analysis of pollutants in wastewater—a case study, Anal. Chim. Acta, 532, 15, 10.1016/j.aca.2004.10.043
Singh, 2019, Estimation of soil properties from the EU spectral library using long short-term memory networks, Geoderma Reg., 18, e00233, 10.1016/j.geodrs.2019.e00233
Srivastava, 2014, Dropout: A simple way to prevent neural networks from overfitting, J. Mach. Learn. Res., 15, 1929
Stafford, 2018, Cadmium in soils under pasture predicted by soil spectral reflectance on two dairy farms in New Zealand, Geoderma Reg., 13, 26, 10.1016/j.geodrs.2018.03.001
Stevens, 2006, Detection of Carbon Stock Change in Agricultural Soils Using Spectroscopic Techniques, Soil Sci. Soc. Am. J., 70, 844, 10.2136/sssaj2005.0025
Stoner, 1981, Characteristic Variations in Reflectance of Surface Soils, Soil Sci. Soc. Am. J., 45, 1161, 10.2136/sssaj1981.03615995004500060031x
Svoray, 2015, Mapping Soil Health over Large Agriculturally Important Areas, Soil Sci. Soc. Am. J., 79, 1420, 10.2136/sssaj2014.09.0371
Taylor, G.R., 2004. Field and image spectrometry for soil mapping. In: 12th Australian Remote Sensing Conference, Fremantle, WA, Australia.
Thissen, 2004, Comparing support vector machines to PLS for spectral regression applications, Chemom. Intell. Lab. Syst., 73, 169, 10.1016/j.chemolab.2004.01.002
Tsakiridis, N.L., Chadoulos, C.G., Theocharis, J.B., Ben-Dor, E., C. Zalidis, G., 2020. A three-level Multiple-Kernel Learning approach for soil spectral analysis. Neurocomputing 389, 27–41. http://doi.org/10.1016/j.neucom.2020.01.008.
Tscharntke, T., Klein, A.M., Kruess, A., Steffan-Dewenter, I., Thies, C., Teja Tscharntke,* Alexandra M. Klein, Andreas Kruess, I.S.-D., C.T., 2005. REVIEWS AND Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecol. Lett. http://doi.org/10.1111/j.1461-0248.2005.00782.x.
Tucker, C.J., 1979. Red and Photographic Infrared l,lnear Combinations for Monitoring Vegetation, Remote Sens. Environ.
Turner, 1998, Long-term effects of daily grazing orbits on nutrient availability in Sahelian West Africa: I. Gradients in the chemical composition of rangeland soils and vegetation, J. Biogeogr., 25, 669, 10.1046/j.1365-2699.1998.2540669.x
Tziolas, 2020, An integrated methodology using open soil spectral libraries and Earth Observation data for soil organic carbon estimations in support of soil-related SDGs, Remote Sens. Environ., 244, 111793, 10.1016/j.rse.2020.111793
UN-WPP, 2020. World Population Prospects 2019 - Volume II: Demographic Profiles, World Population Prospects 2019 - Volume II: Demographic Profiles. http:doi.org/10.18356/7707d011-en.
Ushey, K., Allaire, J.J., Tang, Y., 2020. reticulate: Interface to “Python.”.
Vågen, 2006, Sensing landscape level change in soil fertility following deforestation and conversion in the highlands of Madagascar using Vis-NIR spectroscopy, Geoderma, 133, 281, 10.1016/j.geoderma.2005.07.014
Vanschoenwinkel, 2005, Appropriate kernel functions for support vector machine learning with sequences of symbolic data, 256
Veum, 2017, Sensor data fusion for soil health assessment, Geoderma, 305, 53, 10.1016/j.geoderma.2017.05.031
Veum, 2015, Estimating a Soil Quality Index with VNIR Reflectance Spectroscopy, Soil Sci. Soc. Am. J., 79, 637, 10.2136/sssaj2014.09.0390
Viscarra Rossel, 2016, A global spectral library to characterize the world’s soil, Earth-Science Rev., 155, 198, 10.1016/j.earscirev.2016.01.012
Viscarra Rossel, 2006, Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties, Geoderma, 131, 59, 10.1016/j.geoderma.2005.03.007
von Lützow, 2007, SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms, Soil Biol. Biochem., 39, 2183, 10.1016/j.soilbio.2007.03.007
Wacker, A., Landgrebe, D., 1972. Minimum Distance Classification in Remote Sensing. LARS Tech. Reports.
Wang, 2000, Regression Analysis When Covariates Are Regression Parameters of a Random Effects Model for Observed Longitudinal Measurements, Biometrics, 56, 487, 10.1111/j.0006-341X.2000.00487.x
Wang, 2021, Soil salinity mapping using machine learning algorithms with the sentinel-2 MSI in arid areas, China, Remote Sens., 13, 1
Weil, R., Brady, N., 2017. The Nature and Properties of Soils. 15th edition.
Wetschoreck, F., Krabel, T., Krishnamurthy, S., 2020. 8080Labs/Ppscore: Zenodo Release. http://doi.org/10.5281/ZENODO.4091345.
Wienhold, 2009, Protocol for indicator scoring in the soil management assessment framework (SMAF), Renew. Agric. Food Syst., 24, 260, 10.1017/S1742170509990093
Wise, B.M., Gallagher, N.B., Bro, R., Shaver, J.M., Windig, W., Koch, R.S., 2006. PLS_Toolbox Version 4.0 for use with MATLAB TM, Eigenvector Research.
Xuemei, 2013, Measurement of soil properties using visible and short wave-near infrared spectroscopy and multivariate calibration, Measurement, 46, 3808, 10.1016/j.measurement.2013.07.007
Yair, 1980, Spatial variations in vegetation as related to the soil moisture regime over an arid limestone hillside, northern Negev, Israel, 47, 83
Yang, X.-D., Wang, J., Xu, M.-S., Ali, A., Xu, Y., Lamb, D., Duan, L.-C., Yan, K.-H., Yang, S.-T., 2019. Effects of the ephemeral stream on plant species diversity and distribution in an alluvial fan of arid desert region: An application of a low altitude UAV. PLoS One 14. http://doi.org/10.1371/JOURNAL.PONE.0212057.
Yizhaq, 2020, A model study of terraced riverbeds as novel ecosystems, Sci. Rep., 10, 10.1038/s41598-020-60706-y
Yuan, 2020, Deep learning in environmental remote sensing: Achievements and challenges, Remote Sens. Environ., 241, 111716, 10.1016/j.rse.2020.111716
Zavarella, 2020, Using The Predictive Power Score in R, Medium
Zhang, 2019, Mapping salt marsh soil properties using imaging spectroscopy, ISPRS J. Photogramm. Remote Sens., 148, 221, 10.1016/j.isprsjprs.2019.01.006
Ziv, 2014, Trends in rainfall regime over Israel, 1975–2010, and their relationship to large-scale variability, Reg. Environ. Chang., 14, 1751, 10.1007/s10113-013-0414-x
Žížala, 2017, Assessment of Soil Degradation by Erosion Based on Analysis of Soil Properties Using Aerial Hyperspectral Images and Ancillary Data, Czech Republic, Remote Sens., 9, 28, 10.3390/rs9010028