Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các bộ lọc không khí được chế tạo bằng sợi lyocell xơ và sợi polyethylene terephthalate với sự cấy ghép của nano xơ cellulose để loại bỏ hạt hiệu quả cao
Tóm tắt
Ô nhiễm không khí đã trở thành một mối đe dọa nghiêm trọng đối với sức khỏe con người; do đó, việc phát triển những bộ lọc không khí hiệu suất cao là rất cần thiết. Trong bài báo này, các bộ lọc không khí có cấu trúc bậc thang được cấy ghép nano xơ cellulose (CNF) và bao gồm các hợp chất LC/PET/CNF đã được chuẩn bị bằng phương pháp lọc có áp suất. Khung của hợp chất được làm bằng sợi lyocell xơ (LC), trong khi các sợi polyethylene terephthalate (PET) đóng vai trò như là khoảng cách giữa các sợi LC xơ fibrillated. CNF, đóng vai trò như phụ gia chức năng, đã được cấy ghép vào hợp chất LC/PET để giảm thiểu áp suất rơi. Kết quả cho thấy hiệu suất lọc tổng thể của hợp chất LC/PET (50%:50%) với trọng lượng cơ bản 30 g/m2 đối với vật chất hạt (PM) chỉ đạt 52,69%, trong khi áp suất rơi là 56,50 Pa. Tuy nhiên, sau khi cấy ghép CNF vào hợp chất LC/PET với nồng độ trọng lượng chỉ 0,5 g/m2, hiệu suất lọc tổng thể đã cải thiện đáng kể lên 98,22% với áp suất rơi chấp nhận được là 145,50 Pa (P50W30t3N0.5). Nghiên cứu này cung cấp một phương pháp mới để chế tạo bộ lọc không khí hiệu suất cao với hiệu quả cao trong việc loại bỏ PM.
Từ khóa
#ô nhiễm không khí #bộ lọc không khí #cellulose nanofibrils #hiệu suất lọc #hạt vật chấtTài liệu tham khảo
Avossa J, Batt T, Pelet T, Sidjanski SP, Schönenberger K, Rossi RM (2021) Polyamide nanofiber-based air filters for transparent face masks. ACS Appl Nano Mater 4:12401–12406. https://doi.org/10.1021/acsanm.1c02843
Balgis R, Murata H, Goi Y, Ogi T, Okuyama K, Bao L (2017) Synthesis of dual-size cellulose-polyvinylpyrrolidone nanofiber composites via one-step electrospinning method for high-performance air filter. Langmuir 33:6127–6134. https://doi.org/10.1021/acs.langmuir.7b01193
Beaumont M, Bacher M, Opietnik M, Gindl-Altmutter W, Potthast A, Rosenau T (2018) A general aqueous silanization protocol to introduce vinyl, mercapto or azido functionalities onto cellulose fibers and nanocelluloses. Molecules 23:1427. https://doi.org/10.3390/molecules23061427
Farooq M, Zou T, Riviere G, Sipponen MH, Österberg M (2019) Strong, ductile, and waterproof cellulose nanofibril composite films with colloidal lignin particles. Biomacromol 20:693–704. https://doi.org/10.1021/acs.biomac.8b01364
Gu GQ, Han CB, Lu CX, He C, Jiang T, Gao ZL, Li CJ, Wang ZL (2017) Triboelectric nanogenerator enhanced nanofiber air filters for efficient particulate matter removal. ACS Nano 11:6211–6217. https://doi.org/10.1021/acsnano.7b02321
Han SO, Son WK, Youk JH, Park WH (2008) Electrospinning of ultrafine cellulose fibers and fabrication of poly(butylene succinate) biocomposites reinforced by them. J Appl Polym Sci 107:1954–1959. https://doi.org/10.1002/app.26643
Heggset EB, Chinga-Carrasco G, Syverud K (2017) Temperature stability of nanocellulose dispersions. Carbohydr Polym 157:114–121. https://doi.org/10.1016/j.carbpol.2016.09.077
Hoeng F, Denneulin A, Krosnicki G, Bras J (2016) Positive impact of cellulose nanofibrils on silver nanowire coatings for transparent conductive films. J Mater Chem C Mater 4:1945–1954. https://doi.org/10.1039/c6tc03629e
Kiss P, Stadlbauer W, Burgstaller C, Archodoulaki V (2020) Development of high-performance glass fibre-polypropylene composite laminates: effect of fibre sizing type and coupling agent concentration on mechanical properties. Composites Part A 138:106056. https://doi.org/10.1016/j.compositesa.2020.106056
Konda A, Prakash A, Moss G, Schmoldt M, Grant G, Guha S (2020) Correction to aerosol filtration efficiency of common fabrics used in respiratory cloth masks. ACS Nano 14:10742–10743. https://doi.org/10.1021/acsnano.0c04676
Lavoine N, Bergström L (2017) Nanocellulose-based foams and aerogels: processing, properties, and applications. J Mater Chem A Mater 5:1615–16117. https://doi.org/10.1039/c7ta02807e
Li Q, Wu Y, Fang R, Lei C, Li Y, Li B, Pei Y, Luo X, Liu S (2021) Application of nanocellulose as particle stabilizer in food pickering emulsion: scope, merits and challenges. Trends Food Sci Technol 110:573–583. https://doi.org/10.1016/j.tifs.2021.02.027
Liu T, Cai C, Ma R, Deng Y, Tu L, Fan Y, Lu D (2021) Super-hydrophobic cellulose nanofiber air filter with highly efficient filtration and humidity resistance. ACS Appl Mater Interfaces 13:24032–24041. https://doi.org/10.1021/acsami.1c04258
Long J, Tang M, Liang Y, Hu J (2018) Preparation of fibrillated cellulose nanofiber from lyocell fiber and its application in air filtration. Materials (Basel) 11:1313. https://doi.org/10.3390/ma11081313
Ma S, Zhang M, Nie J, Yang B, Song S, Lu P (2018) Multifunctional cellulose-based air filters with high loadings of metal-organic frameworks prepared by in situ growth method for gas adsorption and antibacterial applications. Cellulose (Lond) 25:5999–6010. https://doi.org/10.1007/s10570-018-1982-1
Maiti S, Jayaramudu J, Das K, Reddy SM, Sadiku R, Ray SS, Liu D (2013) Preparation and characterization of nano-cellulose with new shape from different precursor. Carbohydr Polym 98:562–567. https://doi.org/10.1016/j.carbpol.2013.06.029
Nata IF, Wu T, Chen J, Lee C (2014) A chitin nanofibril reinforced multifunctional monolith poly(vinyl alcohol) cryogel. J Mater Chem B 2:4108–4113. https://doi.org/10.1039/C4TB00175C
Navarro JRG, Wennmalm S, Godfrey J, Breitholtz M, Edlund U (2016) Luminescent nanocellulose platform: from controlled graft block copolymerization to biomarker sensing. Biomacromol 17:1101–1109. https://doi.org/10.1021/acs.biomac.5b01716
Navarro JRG, Rostami J, Ahlinder A, Mietner JB, Bernin D, Saake B, Edlund U (2020) Surface-initiated controlled radical polymerization approach to in situ cross-link cellulose nanofibrils with inorganic nanoparticles. Biomacromol 21:1952–1961. https://doi.org/10.1021/acs.biomac.0c00210
Pant HR, Pant B, Pokharel P, Kim HJ, Tijing LD, Park CH, Lee DS, Kim HY, Kim CS (2013) Photocatalytic TiO2-RGO/nylon-6 spider-wave-like nano-nets via electrospinning and hydrothermal treatment. J Membr Sci 429:225–234. https://doi.org/10.1016/j.memsci.2012.11.025
Park M, Kuk Y, Kwon OH, Acharya J, Ojha GP, Ko J, Kong H, Pant B (2022) Fly ash-incorporated polystyrene nanofiber membrane as a fire-retardant material: valorization of discarded materials. Nanomaterials (Basel) 12:3811. https://doi.org/10.3390/nano12213811
Qin H, Zhang Y, Jiang J, Wang L, Song M, Bi R, Zhu P, Jiang F (2021) Multifunctional superelastic cellulose nanofibrils aerogel by dual ice-templating assembly. Adv Funct Mater 31:2106269. https://doi.org/10.1002/adfm.202106269
Ren Y, Luo Q, Zhuo S, Hu Y, Shen G, Cheng H, Tao S (2021) Bioaccessibility and public health risk of heavy Metal(loid)s in the airborne particulate matter of four cities in northern China. Chemosphere 277:130312. https://doi.org/10.1016/j.chemosphere.2021.130312
Shi S, Zhi C, Zhang S, Yang J, Si Y, Jiang Y, Ming Y, Lau K, Fei B, Hu J (2022) Lotus leaf-inspired breathable membrane with structured microbeads and nanofibers. ACS Appl Mater Interfaces 14:39610–39621. https://doi.org/10.1021/acsami.2c11251
Souzandeh H, Scudiero L, Wang Y, Zhong W (2017) A disposable multi-functional air filter: paper towel/protein nanofibers with gradient porous structures for capturing pollutants of broad species and sizes. ACS Sustainable Chem Eng 5:6209–6217. https://doi.org/10.1021/acssuschemeng.7b01160
Tan NPB, Paclijan SS, Ali HNM, Hallazgo CMJS, Lopez CJF, Ebora YC (2019) Solution blow spinning (SBS) nanofibers for composite air filter masks. ACS Appl Nano Mater 2:2475–2483. https://doi.org/10.1021/acsanm.9b00207
Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117. https://doi.org/10.1016/j.carbpol.2014.03.039
Tu H, Zhu M, Duan B, Zhang L (2021) Recent progress in high-strength and robust regenerated cellulose materials. Adv Mater 33:2000682. https://doi.org/10.1002/adma.202000682
Wang QQ, Zhu JY, Gleisner R, Kuster TA, Baxa U, McNeil SE (2012) Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose (Lond) 19:1631–1643. https://doi.org/10.1007/s10570-012-9745-x
Wang L, Chen C, Wang J, Gardner DJ, Tajvidi M (2020) Cellulose nanofibrils versus cellulose nanocrystals: comparison of performance in flexible multilayer films for packaging applications. Food Packag Shelf Life 23:100464. https://doi.org/10.1016/j.fpsl.2020.100464
Wang X, Li R, Zeng J, Cheng Z, Wang B, Ding Q, Gao W, Chen K, Xu J (2020b) Efficient fractionation of cellulose nanofibers using spiral microchannel. Cellulose (Lond) 27:4029–4041. https://doi.org/10.1007/s10570-020-03072-2
Wang X, Xiang H, Song C, Zhu D, Sui J, Liu Q, Long Y (2020) Highly efficient transparent air filter prepared by collecting-electrode-free bipolar electrospinning apparatus. J Hazard Mater 385:121535. https://doi.org/10.1016/j.jhazmat.2019.121535
Wang D, Zhang D, Li P, Yang Z, Mi Q, Yu L (2021) Electrospinning of flexible poly(vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nanomicro Lett 13:57. https://doi.org/10.1007/s40820-020-00580-5
Wang Q, Liu S, Liu J, Sun J, Zhang Z, Zhu Q (2022) Sustainable cellulose nanomaterials for environmental remediation-achieving clean air, water, and energy: a review. Carbohydr Polym 285:119251. https://doi.org/10.1016/j.carbpol.2022.119251
Wang Q, Liu S, Liu J, Sun J, Zhang Z, Zhu Q (2022) Sustainable cellulose nanomaterials for environmental remediation-achieving clean air, water, and energy: a review. Carbohydr Polym 285:119251. https://doi.org/10.1016/j.carbpol.2022.119251
Wang X, Zeng J, Zhu JY (2022) Morphological and rheological properties of cellulose nanofibrils prepared by post-fibrillation endoglucanase treatment. Carbohydr Polym 295:119885. https://doi.org/10.1016/j.carbpol.2022.119885
Watanabe K, Maeda T, Hotta A (2018) Uniformly dispersed polymeric nanofiber composites by electrospinning: poly(vinyl alcohol) nanofibers/polydimethylsiloxane composites. Compos Sci Technol 165:18–23. https://doi.org/10.1016/j.compscitech.2018.06.007
White AJ, Kresovich JK, Keller JP, Xu Z, Kaufman JD, Weinberg CR, Taylor JA, Sandler DP (2019) Air pollution, particulate matter composition and methylation-based biologic age. Environ Int 132:105071. https://doi.org/10.1016/j.envint.2019.105071
Wu X, Chen S, Guo J, Gao G (2018) Effect of air pollution on the stock yield of heavy pollution enterprises in China’s key control cities. J Clean Prod 170:399–406. https://doi.org/10.1016/j.jclepro.2017.09.154
Xiong Z, Lin J, Li X, Bian F, Wang J (2021) Hierarchically structured nanocellulose-implanted air filters for high-efficiency particulate matter removal. ACS Appl Mater Interfaces 13:12408–12416. https://doi.org/10.1021/acsami.1c01286
Xiong Z, Li X, Wang J, Lin J (2022) Nanocellulose implantation enriched the pore structure of aerogel for effective particulate matter removal. Int J Biol Macromol 219:1237–1243. https://doi.org/10.1016/j.ijbiomac.2022.08.188
Xu H, Jin W, Luo J, Wang F, Zhu H, Liu G, Yu Y, Lei C, Guo Y (2021) Study of the PTFE multi-tube high efficiency air filter for indoor air purification. Process Saf Environ Prot 151:28–38. https://doi.org/10.1016/j.psep.2021.05.007
Zhang R, Liu C, Hsu P, Zhang C, Liu N, Zhang J, Lee HR, Lu Y, Qiu Y, Chu S, Cui Y (2016) Nanofiber air filters with high-temperature stability for efficient PM2.5 removal from the pollution sources. Nano Lett 16:3642–3649. https://doi.org/10.1021/acs.nanolett.6b00771
Zhang X, Zhao X, Xue T, Yang F, Fan W, Liu T (2020) Bidirectional anisotropic polyimide/bacterial cellulose aerogels by freeze-drying for super-thermal insulation. Chem Eng J 385:123963. https://doi.org/10.1016/j.cej.2019.123963
Zhu M, Han J, Wang F, Shao W, Xiong R, Zhang Q, Pan H, Yang Y, Samal SK, Zhang F, Huang C (2017) Electrospun nanofibers membranes for effective air filtration. Macromol Mater Eng 302:1600353. https://doi.org/10.1002/mame.201600353